Basic
📁 Source: Mathlib/Algebra/Ring/Basic.lean
Statistics
AddHom
Definitions
| Name | Category | Theorems |
|---|---|---|
mulLeft 📖 | CompOp | |
mulRight 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
mulLeft_apply 📖 | mathematical | — | DFunLike.coeAddHomDistrib.toAddfunLikemulLeftDistrib.toMul | — | — |
mulRight_apply 📖 | mathematical | — | DFunLike.coeAddHomDistrib.toAddfunLikemulRightDistrib.toMul | — | — |
AddMonoid.End
Definitions
Theorems
AddMonoidHom
Definitions
| Name | Category | Theorems |
|---|---|---|
mul 📖 | CompOp | |
mulLeft 📖 | CompOp | |
mulRight 📖 | CompOp |
Theorems
IsDomain
Theorems
MulOpposite
Definitions
| Name | Category | Theorems |
|---|---|---|
instHasDistribNeg 📖 | CompOp | — |
NoZeroDivisors
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
to_isCancelMulZero 📖 | mathematical | — | IsCancelMulZeroDistrib.toMulNonUnitalNonAssocSemiring.toDistribNonUnitalNonAssocRing.toNonUnitalNonAssocSemiringMulZeroClass.toZeroNonUnitalNonAssocSemiring.toMulZeroClass | — | isCancelMulZero_iff_noZeroDivisors |
to_isDomain 📖 | mathematical | — | IsDomainRing.toSemiring | — | to_isCancelMulZero |
Subsingleton
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
to_isCancelMulZero 📖 | mathematical | — | IsCancelMulZero | — | eq_zero |
to_noZeroDivisors 📖 | mathematical | — | NoZeroDivisors | — | eq_zero |
(root)
Theorems
---