Documentation Verification Report

CompTypeclasses

πŸ“ Source: Mathlib/Algebra/Ring/CompTypeclasses.lean

Statistics

MetricCount
DefinitionsRingHomCompTriple, RingHomId, RingHomInvPair, RingHomSurjective
4
Theoremssurjective, comp_apply, comp_eq, ids, right_ids, eq_id, comp_apply_eq, comp_apply_eqβ‚‚, comp_eq, comp_eqβ‚‚, ids, of_ringEquiv, triples, triplesβ‚‚, comp, ids, instToRingHomRingEquiv, invPair, is_surjective, instRingHomIdId
20
Total24

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
surjective πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
instFunLike
β€”RingHomSurjective.is_surjective

RingHomCompTriple

Theorems

NameKindAssumesProvesValidatesDepends On
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”RingHom.congr_fun
comp_eq
comp_eq πŸ“–mathematicalβ€”RingHom.comp
Semiring.toNonAssocSemiring
β€”β€”
ids πŸ“–mathematicalβ€”RingHomCompTriple
RingHom.id
Semiring.toNonAssocSemiring
β€”RingHom.comp_id
right_ids πŸ“–mathematicalβ€”RingHomCompTriple
RingHom.id
Semiring.toNonAssocSemiring
β€”RingHom.id_comp

RingHomId

Theorems

NameKindAssumesProvesValidatesDepends On
eq_id πŸ“–mathematicalβ€”RingHom.id
Semiring.toNonAssocSemiring
β€”β€”

RingHomInvPair

Theorems

NameKindAssumesProvesValidatesDepends On
comp_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”RingHom.comp_apply
comp_eq
comp_apply_eqβ‚‚ πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”RingHom.comp_apply
comp_eqβ‚‚
comp_eq πŸ“–mathematicalβ€”RingHom.comp
Semiring.toNonAssocSemiring
RingHom.id
β€”β€”
comp_eqβ‚‚ πŸ“–mathematicalβ€”RingHom.comp
Semiring.toNonAssocSemiring
RingHom.id
β€”β€”
ids πŸ“–mathematicalβ€”RingHomInvPair
RingHom.id
Semiring.toNonAssocSemiring
β€”β€”
of_ringEquiv πŸ“–mathematicalβ€”RingHomInvPair
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm_toRingHom_comp_toRingHom
triples πŸ“–mathematicalβ€”RingHomCompTriple
RingHom.id
Semiring.toNonAssocSemiring
β€”comp_eq
triplesβ‚‚ πŸ“–mathematicalβ€”RingHomCompTriple
RingHom.id
Semiring.toNonAssocSemiring
β€”comp_eqβ‚‚

RingHomSurjective

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”RingHomSurjectiveβ€”RingHom.surjective
RingHomCompTriple.comp_eq
RingHom.coe_comp
ids πŸ“–mathematicalβ€”RingHomSurjective
RingHom.id
Semiring.toNonAssocSemiring
β€”is_surjective
invPair
RingHomInvPair.ids
instToRingHomRingEquiv πŸ“–mathematicalβ€”RingHomSurjective
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.surjective
invPair πŸ“–mathematicalβ€”RingHomSurjectiveβ€”RingHomInvPair.comp_apply_eqβ‚‚
is_surjective πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”β€”

(root)

Definitions

NameCategoryTheorems
RingHomCompTriple πŸ“–CompData
5 mathmath: RingHomInvPair.triples, RingHomInvPair.triplesβ‚‚, RingHomCompTriple.right_ids, AlgHom.instRingHomCompTripleComp, RingHomCompTriple.ids
RingHomId πŸ“–CompData
1 mathmath: instRingHomIdId
RingHomInvPair πŸ“–CompData
6 mathmath: RingHomInvPair.instStarRingEnd, RingHomInvPair.symm, WittVector.inv_pairβ‚‚, WittVector.inv_pair₁, RingHomInvPair.ids, RingHomInvPair.of_ringEquiv
RingHomSurjective πŸ“–CompData
8 mathmath: RingHomSurjective.ids, RingHomSurjective.instToRingHomRingEquiv, RingHomSurjective.invPair, RingHom.instRingHomSurjectiveProdSnd, RingHomSurjective.comp, instRingHomSurjectiveForallEvalRingHom, RingHom.instRingHomSurjectiveProdFst, Ideal.Quotient.instRingHomSurjectiveQuotientMk

Theorems

NameKindAssumesProvesValidatesDepends On
instRingHomIdId πŸ“–mathematicalβ€”RingHomId
RingHom.id
Semiring.toNonAssocSemiring
β€”β€”

---

← Back to Index