CompTypeclasses
π Source: Mathlib/Algebra/Ring/CompTypeclasses.lean
Statistics
| Metric | Count |
|---|---|
| 4 | |
| 20 | |
| Total | 24 |
RingHom
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
surjective π | mathematical | β | DFunLike.coeRingHomSemiring.toNonAssocSemiringinstFunLike | β | RingHomSurjective.is_surjective |
RingHomCompTriple
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
comp_apply π | mathematical | β | DFunLike.coeRingHomSemiring.toNonAssocSemiringRingHom.instFunLike | β | RingHom.congr_funcomp_eq |
comp_eq π | mathematical | β | RingHom.compSemiring.toNonAssocSemiring | β | β |
ids π | mathematical | β | RingHomCompTripleRingHom.idSemiring.toNonAssocSemiring | β | RingHom.comp_id |
right_ids π | mathematical | β | RingHomCompTripleRingHom.idSemiring.toNonAssocSemiring | β | RingHom.id_comp |
RingHomId
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eq_id π | mathematical | β | RingHom.idSemiring.toNonAssocSemiring | β | β |
RingHomInvPair
Theorems
RingHomSurjective
Theorems
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
RingHomCompTriple π | CompData | |
RingHomId π | CompData | |
RingHomInvPair π | CompData | |
RingHomSurjective π | CompData |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instRingHomIdId π | mathematical | β | RingHomIdRingHom.idSemiring.toNonAssocSemiring | β | β |
---