Documentation Verification Report

Equiv

๐Ÿ“ Source: Mathlib/Algebra/Ring/Equiv.lean

Statistics

MetricCount
DefinitionstoRingEquiv, toRingEquiv, inverse, symm_apply, cast, instEquivLike, instInhabited, instUnique, ofBijective, ofHomInv, ofHomInv', ofNonUnitalRingHom, ofRingHom, ofUnique, op, opOp, piCongrLeft, piCongrLeft', piCongrRight, piEquivPiSubtypeProd, piMulOpposite, piOptionEquivProd, piUnique, prodCongr, refl, sumArrowEquivProdArrow, aux, toAddEquiv, toAddMonoidHom, toEquiv, toMonoidHom, toMulEquiv, toNonUnitalRingHom, toOpposite, toRingHom, trans, unop, RingEquivClass, toRingEquiv, inverse, instCoeTCRingEquivOfRingEquivClass, ยซterm_โ‰ƒ+*_ยป
42
TheoremsisCancelMulZero_iff, isDomain, isDomain_iff, isLeftCancelMulZero_iff, isRightCancelMulZero_iff, noZeroDivisors, noZeroDivisors_iff, inverse_apply, apply_symm_apply, bijective, cast_apply, cast_symm_apply, coe_addEquiv_refl, coe_addEquiv_trans, coe_addMonoidHom_refl, coe_addMonoidHom_trans, coe_mk, coe_monoidHom_refl, coe_monoidHom_trans, coe_mulEquiv_refl, coe_mulEquiv_trans, coe_nonUnitalRingHom_inj_iff, coe_ofBijective, coe_prodCongr, coe_refl, coe_ringHom_inj_iff, coe_ringHom_ofRingHom, coe_ringHom_refl, coe_ringHom_trans, coe_toAddEquiv, coe_toAddEquiv_symm, coe_toEquiv, coe_toEquiv_symm, coe_toMulEquiv, coe_toMulEquiv_symm, coe_toNonUnitalRingHom, coe_toRingHom, coe_trans, comp_ofBijective_symm, comp_symm, congr_arg, congr_fun, eq_symm_apply, ext, ext_iff, image_eq_preimage, image_eq_preimage_symm, image_symm_eq_preimage, injective, instRingEquivClass, invFun_eq_symm, map_add, map_add', map_eq_neg_one_iff, map_eq_one_iff, map_eq_zero_iff, map_mul, map_mul', map_ne_one_iff, map_ne_zero_iff, map_neg, map_neg_one, map_one, map_pow, map_sub, map_zero, mk_coe, mk_coe', ofBijective_apply, ofBijective_symm_comp, ofHomInv'_apply, ofHomInv'_symm_apply, ofHomInv_apply, ofHomInv_symm_apply, ofNonUnitalRingHom_apply, ofNonUnitalRingHom_symm_apply, ofRingHom_apply, ofRingHom_coe_ringHom, ofRingHom_symm, ofRingHom_symm_apply, opOp_apply, opOp_symm_apply, op_apply_apply, op_apply_symm_apply, op_symm_apply_apply, op_symm_apply_symm_apply, piCongrLeft'_apply, piCongrLeft'_symm, piCongrLeft'_symm_apply, piCongrLeft_apply, piCongrLeft_symm_apply, piCongrRight_apply, piCongrRight_refl, piCongrRight_symm, piCongrRight_trans, piEquivPiSubtypeProd_apply, piEquivPiSubtypeProd_symm_apply, piOptionEquivProd_apply, piOptionEquivProd_symm_apply, piUnique_apply, piUnique_symm_apply, prodCongr_apply, prodCongr_symm_apply, refl_apply, self_trans_symm, sumArrowEquivProdArrow_apply, sumArrowEquivProdArrow_symm_apply, surjective, symm_apply_apply, symm_apply_eq, symm_bijective, symm_comp, symm_mk, symm_ofNonUnitalRingHom, symm_refl, symm_symm, symm_toNonUnitalRingHom_apply_toNonUnitalRingHom_apply, symm_toNonUnitalRingHom_comp_toNonUnitalRingHom, symm_toRingHom_apply_toRingHom_apply, symm_toRingHom_comp_toRingHom, symm_trans, symm_trans_apply, symm_trans_self, toAddEquiv_eq_coe, toAddMonoidHom_refl, toAddMonoidMom_commutes, toEquiv_commutes, toEquiv_eq_coe, toMonoidHom_commutes, toMonoidHom_refl, toMulEquiv_eq_coe, toNonUnitalRingHom_apply_symm_toNonUnitalRingHom_apply, toNonUnitalRingHom_commutes, toNonUnitalRingHom_eq_coe, toNonUnitalRingHom_injective, toNonUnitalRingHom_refl, toNonUnitalRingHom_trans, toNonUnitalRingHomm_comp_symm_toNonUnitalRingHom, toOpposite_apply, toOpposite_symm_apply, toRingHom_apply_symm_toRingHom_apply, toRingHom_comp_symm_toRingHom, toRingHom_eq_coe, toRingHom_injective, toRingHom_refl, toRingHom_trans, trans_apply, map_add, toAddEquivClass, toMulEquivClass, toNonUnitalRingHomClass, toRingHomClass, inverse_apply
153
Total195

AddEquiv

Definitions

NameCategoryTheorems
toRingEquiv ๐Ÿ“–CompOpโ€”

MulEquiv

Definitions

NameCategoryTheorems
toRingEquiv ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isCancelMulZero_iff ๐Ÿ“–mathematicalโ€”IsCancelMulZero
MulZeroClass.toMul
MulZeroClass.toZero
โ€”Function.Injective.isCancelMulZero
injective
map_zero
MulEquivClass.toZeroHomClass
instMulEquivClass
map_mul
MulEquivClass.instMulHomClass
isDomain ๐Ÿ“–mathematicalโ€”IsDomainโ€”Function.Injective.isLeftCancelMulZero
injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MulEquivClass.toMonoidWithZeroHomClass
instMulEquivClass
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Function.Injective.isRightCancelMulZero
IsCancelMulZero.toIsRightCancelMulZero
zero_ne_one
NeZero.one
IsDomain.toNontrivial
isDomain_iff ๐Ÿ“–mathematicalโ€”IsDomainโ€”isDomain
isLeftCancelMulZero_iff ๐Ÿ“–mathematicalโ€”IsLeftCancelMulZero
MulZeroClass.toMul
MulZeroClass.toZero
โ€”Function.Injective.isLeftCancelMulZero
injective
map_zero
MulEquivClass.toZeroHomClass
instMulEquivClass
map_mul
MulEquivClass.instMulHomClass
isRightCancelMulZero_iff ๐Ÿ“–mathematicalโ€”IsRightCancelMulZero
MulZeroClass.toMul
MulZeroClass.toZero
โ€”Function.Injective.isRightCancelMulZero
injective
map_zero
MulEquivClass.toZeroHomClass
instMulEquivClass
map_mul
MulEquivClass.instMulHomClass
noZeroDivisors ๐Ÿ“–mathematicalโ€”NoZeroDivisors
MulZeroClass.toMul
MulZeroClass.toZero
โ€”Function.Injective.noZeroDivisors
injective
map_zero
MulEquivClass.toZeroHomClass
instMulEquivClass
map_mul
MulEquivClass.instMulHomClass
noZeroDivisors_iff ๐Ÿ“–mathematicalโ€”NoZeroDivisors
MulZeroClass.toMul
MulZeroClass.toZero
โ€”noZeroDivisors

NonUnitalRingHom

Definitions

NameCategoryTheorems
inverse ๐Ÿ“–CompOp
1 mathmath: inverse_apply

Theorems

NameKindAssumesProvesValidatesDepends On
inverse_apply ๐Ÿ“–mathematicalDFunLike.coe
NonUnitalRingHom
instFunLike
inverseโ€”โ€”

RingEquiv

Definitions

NameCategoryTheorems
cast ๐Ÿ“–CompOp
2 mathmath: cast_apply, cast_symm_apply
instEquivLike ๐Ÿ“–CompOp
617 mathmath: MonoidAlgebra.mapDomainRingEquiv_single, AbsoluteValue.IsEquiv.isEmbedding_equivWithAbs, piCongrRight_apply, RCLike.sqrt_eq_ite, AddMonoidAlgebra.mapDomainRingEquiv_apply, apply_symm_apply, toRingCatIso_inv, coe_ringHom_trans, Language.reverseIso_apply, Polynomial.roots_expand, toOpposite_symm_apply, FractionalIdeal.mapEquiv_apply, AlgebraicGeometry.StructureSheaf.globalSectionsIso_inv, Int.quotientSpanEquivZMod_comp_Quotient_mk, frobeniusEquiv_apply, BitVec.equivFin_symm_apply_toFin, coe_addEquiv_refl, IsLocalization.AtPrime.equivQuotientMapOfIsMaximal_apply_mk, WithAbs.algebraMap_left_apply, iterateFrobeniusEquiv_symm_add_apply, coe_frobeniusEquiv_symm_comp_coe_frobenius, coe_prodComm_symm, surjective, ofHomInv'_apply, RingHom.IsStandardSmoothOfRelativeDimension.equiv, op_apply_apply, idealComapOrderIso_apply, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_symm_mk, IsPerfectClosure.equiv_comp_equiv_apply_eq_self, asBoolRingAsBoolAlg_apply, MvPolynomial.isEmptyRingEquiv_apply, Polynomial.opRingEquiv_op_monomial, DoubleQuot.coe_quotQuotEquivQuotOfLEโ‚_symm, FDRep.endRingEquiv_symm_comp_ฯ, toOpposite_apply, map_sub, BoolRing.Iso.mk_hom_hom', LaurentSeries.LaurentSeriesRingEquiv_def, toEquiv_commutes, LocallyConstant.congrLeftRingEquiv_apply_apply, RingHomSurjective.instToRingHomRingEquiv, RingHom.quotientKerEquivOfSurjective_symm_apply, WittVector.IsocrystalHom.frob_equivariant, NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, AlgEquiv.toRingEquiv_toRingHom, WittVector.frobeniusEquiv_symm_apply, prodProdProdComm_apply, Ideal.comap_symm, AlgEquiv.coe_ringEquiv', map_list_sum, Int.quotientSpanNatEquivZMod_comp_Quotient_mk, map_neg, RingAut.smul_def, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_C, NonUnitalSubsemiring.coe_equivMapOfInjective_apply, AddMonoidAlgebra.toRingHom_mapRangeRingEquiv, NonUnitalSubsemiring.mem_map_equiv, MvPolynomial.mvPolynomialEquivMvPolynomial_symm_apply, PowerBasis.quotientEquivQuotientMinpolyMap_apply, NonUnitalSubring.map_equiv_eq_comap_symm, Submodule.LinearDisjoint.op, RestrictScalars.ringEquiv_algebraMap, MonoidAlgebra.opRingEquiv_single, Valuation.IsEquiv.orderRingIso_apply, AlgebraicGeometry.localRingHom_comp_stalkIso_apply, rootsOfUnity.integer_power_of_ringEquiv, Polynomial.leadingCoeff_opRingEquiv, toCommSemiRingCatIso_inv, Subring.centerCongr_apply_coe, mopMatrix_symm_apply, NonUnitalSubsemiring.centerCongr_symm_apply_coe, ofLeftInverse_symm_apply, NumberField.InfinitePlace.Completion.norm_coe, iterateFrobeniusEquiv_def, piOptionEquivProd_apply, op_apply_symm_apply, RingCon.comapQuotientEquivRange_symm_mk, piCongrLeft_symm_apply, ofLeftInverse_apply, snd_comp_coe_prodComm, RCLike.realRingEquiv_symm_apply, BoolRing.Iso.mk_inv_hom', RingCon.comapQuotientEquivOfSurj_symm_mk, ext_iff, piCongrLeft'_apply, NonUnitalSubring.centerCongr_apply_coe, ofHomInv_symm_apply, mopMatrix_apply, Subsemiring.centerCongr_symm_apply_coe, MonoidAlgebra.opRingEquiv_symm_apply, NumberField.RingOfIntegers.withValEquiv_symm_apply, WithAbs.equiv_algebraMap_apply, Matrix.uniqueRingEquiv_apply, coe_toMulEquiv, ModuleCat.endRingEquiv_symm_apply_hom, map_mul, frobeniusEquiv_symm_comp_frobenius, AddMonoidAlgebra.uniqueRingEquiv_apply, IsLocalization.isLocalization_iff_of_base_ringEquiv, MvPolynomial.mvPolynomialEquivMvPolynomial_apply, MonoidHom.map_frobeniusEquiv_symm, MonoidAlgebra.uniqueRingEquiv_apply, AddMonoidAlgebra.opRingEquiv_symm_single, modularCyclotomicCharacter.spec, ofLeftInverseS_symm_apply, AddMonoidAlgebra.opRingEquiv_symm_apply, MulSemiringAction.toRingEquiv_apply, NonUnitalSubsemiring.centerToMulOpposite_symm_apply_coe, modularCyclotomicCharacter.toFun_spec', quotientBot_symm_mk, Ideal.quotEquivOfEq_mk, Ideal.comap_of_equiv, Polynomial.mapEquiv_symm_apply, MonoidAlgebra.mapRangeRingEquiv_single, Subring.mopRingEquivOp_apply_coe, BialgEquiv.toRingEquiv_toRingHom, RCLike.complexRingEquiv_apply, Rat.IsIntegralClosure.intEquiv_apply_eq_ringOfIntegersEquiv, DoubleQuot.quotQuotEquivComm_comp_quotQuotMk, asBoolRingAsBoolAlg_symm_apply, DoubleQuot.quotQuotEquivComm_quotQuotMk, HahnSeries.toMvPowerSeries_symm_apply_coeff, toNonUnitalRingHom_commutes, PreTilt.coeff_frobeniusEquiv_symm, RingCon.comapQuotientEquivRangeS_symm_mk, moduleEndSelf_symm_apply, Matrix.transposeRingEquiv_symm_apply, Subsemiring.coe_equivMapOfInjective_apply, starRingAut_apply, Matrix.piRingEquiv_apply, NonUnitalSubring.topEquiv_symm_apply_coe, instRingEquivClass, Polynomial.opRingEquiv_op_C, coe_ofBijective, Polynomial.roots_X_pow_char_pow_sub_C_pow, NumberField.InfiniteAdeleRing.mixedEmbedding_eq_algebraMap_comp, iterateFrobeniusEquiv_add_apply, WithVal.apply_symm_equiv, IsLocalization.ringEquivOfRingEquiv_symm_apply, symm_apply_apply, sofLeftInverse'_apply, IsLocalization.AtPrime.equivQuotientMapOfIsMaximal_symm_apply_mk, RingAut.one_apply, map_neg_one, cast_apply, gelfandStarTransform_symm_apply, Matrix.piRingEquiv_symm_apply, WithAbs.tendsto_one_div_one_add_pow_nhds_one, RingCon.comapQuotientEquivRange_mk, symm_apply_eq, AlgEquiv.op_apply_symm_apply, WithVal.apply_equiv, piEquivPiSubtypeProd_symm_apply, quotientBot_mk, prodZeroRing_symm_apply, ofBijective_apply, Subring.comap_equiv_eq_map_symm, zeroRingProd_symm_apply, Valuation.IsEquiv.uniformContinuous_equivWithVal, map_one, injective, map_eq_zero_iff, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, map_zero, MvPolynomial.mapEquiv_apply, WithAbs.algebraMap_right_apply, WittVector.IsocrystalEquiv.frob_equivariant, Subsemiring.centerCongr_apply_coe, map_eq_one_iff, modularCyclotomicCharacter.toFun_spec, coe_ringEquiv_lpBCF, NonUnitalSubring.topEquiv_apply, toCommRingCatIso_inv, toAddMonoidMom_commutes, FractionalIdeal.canonicalEquiv_mk0, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_some, moduleEndSelfOp_apply, AdjoinRoot.quotEquivQuotMap_apply, congr_arg, Subring.centerToMulOpposite_symm_apply_coe, toRingCatIso_hom, Subsemiring.mem_map_equiv, coe_toAddEquiv, ZMod.ringEquivCongr_refl_apply, Subring.topEquiv_apply, subsemiringMap_apply_coe, coe_mk, IsFractionRing.ringEquivOfRingEquiv_algebraMap, MvPolynomial.isEmptyRingEquiv_symm_apply, Subring.mopRingEquivOp_symm_apply, NonUnitalSubsemiring.map_equiv_eq_comap_symm, Polynomial.opRingEquiv_op_X, Subsemiring.centerToMulOpposite_symm_apply_coe, TruncatedWittVector.commutes_symm', invFun_eq_symm, piEquivPiSubtypeProd_apply, map_add, toCommRingCatIso_hom, CategoryTheory.Iso.ringCatIsoToRingEquiv_toRingHom, MonoidAlgebra.opRingEquiv_symm_single, IsLocalization.ringEquivOfRingEquiv_eq_map, PreTilt.coeff_iterate_frobeniusEquiv_symm, IsLocalRing.ResidueField.mapEquiv_apply, DoubleQuot.coe_quotQuotEquivQuotSupโ‚, Ideal.quotientMulEquivQuotientProd_snd, AddMonoidAlgebra.commRingEquiv_single_single, Module.End.ringEquivEndFinsupp_apply_apply_apply, map_list_prod, Subring.mem_map_equiv, FractionalIdeal.canonicalEquiv_spanSingleton, Ideal.symm_apply_mem_of_equiv_iff, Matrix.compRingEquiv_symm_apply, NumberField.CMExtension.equivMaximalRealSubfield_apply, moduleEndSelf_apply, Ideal.fst_comp_quotientMulEquivQuotientProd, ofHomInv_apply, ZMod.ringEquivCongr_ringEquivCongr_apply, NonUnitalSubring.centerCongr_symm_apply_coe, Subsemiring.centerToMulOpposite_apply_coe, IsAlgClosure.equivOfEquiv_comp_algebraMap, coe_addMonoidHom_refl, Submodule.equivOpposite_apply, RingCon.quotientQuotientEquivQuotient_coe_coe, MonoidAlgebra.curryRingEquiv_symm_single, ofRingHom_symm_apply, WithVal.lt_def, coe_mulEquiv_trans, AbsoluteValue.IsEquiv.equivWithAbs_image_mem_nhds_zero, Int.quotientSpanEquivZMod_comp_castRingHom, RingCon.quotientKerEquivOfRightInverse_apply, Matrix.transposeRingEquiv_apply, prodCongr_apply, OrderRingIso.coe_mk, LocallyConstant.congrLeftRingEquiv_symm_apply_apply, frobeniusEquiv_symm_pow, evalRingHom_mapMatrix_comp_compRingEquiv, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_X_none, map_det, LinearEquiv.conjRingEquiv_apply_apply, subsemiringMap_symm_apply_coe, RingCon.comapQuotientEquivRangeS_mk, trans_apply, coe_frobeniusEquiv, coe_ringHom_inj_iff, addMonoidEndRingEquivInt_apply, quotAdjoinEquivQuotMap_apply_mk, mapTwoSidedIdeal_apply, MulSemiringAction.toAlgEquiv_toEquiv, WittVector.dvd_sub_sum_teichmuller_iterateFrobeniusEquiv_coeff, LaurentSeries.coe_X_compare, FractionalIdeal.canonicalEquiv_coeIdeal, toNonUnitalRingHom_eq_coe, frobenius_comp_frobeniusEquiv_symm, PerfectionMap.comp_equiv', ofNonUnitalRingHom_apply, Subring.topEquiv_symm_apply_coe, RingCon.coe_comapQuotientEquivRange_mk, IsAlgClosure.equivOfEquiv_symm_algebraMap, AlgEquiv.coe_ringEquiv, RingCon.coe_quotientKerEquivRangeS_mk, iterateFrobeniusEquiv_one_apply, coe_nonUnitalRingHom_inj_iff, idealComapOrderIso_symm_apply, AlgebraicIndependent.mvPolynomialOptionEquivPolynomialAdjoin_apply, DoubleQuot.coe_quotQuotEquivQuotSupโ‚_symm, IsPerfectClosure.equiv_comp, Rat.HeightOneSpectrum.natGenerator_dvd_iff, comp_ofBijective_symm, Polynomial.roots_X_pow_char_sub_C_pow, WittVector.inv_pairโ‚‚, Subring.centerToMulOpposite_apply_coe, WittVector.exists_frobenius_solution_fractionRing, MulSemiringAction.toRingEquiv_symm_apply, LaurentSeries.exists_powerSeries_of_memIntegers, Ideal.quotEquivOfEq_eq_factor, coe_frobenius_comp_coe_frobeniusEquiv_symm, AlgEquiv.op_symm_apply_symm_apply, FractionalIdeal.coeFun_mapEquiv, coe_toEquiv, sumArrowEquivProdArrow_symm_apply, Ring.DirectLimit.ringEquiv_of, RingHom.quotientKerEquivOfRightInverse.Symm.apply, IsLocalization.AtPrime.equivQuotMaximalIdeal_apply_mk, height_comap, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, NumberField.RingOfIntegers.withValEquiv_apply, RingCon.congr_mk, FractionalIdeal.canonicalEquiv_canonicalEquiv, map_prod, WittVector.inv_pairโ‚, WithAbs.norm_eq_abv, Matrix.conjTransposeRingEquiv_symm_apply, MonoidAlgebra.mapRangeRingEquiv_apply, cast_symm_apply, map_pow, prodZeroRing_apply, RingHom.quotientKerEquivOfSurjective_apply_mk, Subsemiring.mopRingEquivOp_apply_coe, IsLocalization.AtPrime.algebraMap_equivQuotMaximalIdeal_symm_apply, IsPerfectClosure.equiv_self_apply, toEquiv_eq_coe, PerfectionMap.comp_equiv, piUnique_symm_apply, Ideal.pointwise_smul_eq_comap, mapMatrix_apply, Ideal.snd_comp_quotientMulEquivQuotientProd, HahnSeries.coeff_toPowerSeries, RingHom.map_iterate_frobeniusEquiv_symm, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, RestrictScalars.ringEquiv_map_smul, frobeniusEquiv_def, Padic.toEquiv_withValUniformEquiv_eq_toEquiv_withValRingEquiv, AdjoinRoot.Polynomial.quotQuotEquivComm_mk, Ideal.quotientInfEquivQuotientProd_snd, Polynomial.opRingEquiv_symm_C_mul_X_pow, coe_prodComm, toMonoidHom_commutes, Polynomial.opRingEquiv_symm_monomial, toCommSemiRingCatIso_hom, RingCon.quotientQuotientEquivQuotient_mk_mk, IsLocalization.algEquivOfAlgEquiv_symm_apply, Submodule.linearDisjoint_op, NonUnitalSubring.comap_equiv_eq_map_symm, IsPerfectClosure.equiv_comp_equiv_apply, Rat.HeightOneSpectrum.span_natGenerator, DoubleQuot.coe_quotQuotEquivQuotOfLEโ‚, PerfectRing.lift_apply, Ideal.apply_mem_of_equiv_iff, Polynomial.support_opRingEquiv, PerfectionMap.comp_symm_equiv, RingHom.rangeRestrictFieldEquiv_apply_symm_apply, RCLike.complexRingEquiv_symm_apply, ofLeftInverse'_symm_apply, WithAbs.equivWithAbs_equiv_symm_apply, prodProdProdComm_toMulEquiv, FractionalIdeal.canonicalEquiv_flip, IsLocalization.isLocalization_of_base_ringEquiv, AddMonoidAlgebra.opRingEquiv_single, Subring.map_equiv_eq_comap_symm, NonUnitalSubsemiring.comap_equiv_eq_map_symm, HahnSeries.coeff_toPowerSeries_symm, AlgEquiv.opComm_apply_symm_apply, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, WithAbs.equiv_equivWithAbs_symm_apply, LaurentSeries.powerSeriesRingEquiv_coe_apply, IsPerfectClosure.equiv_apply, Matrix.uniqueRingEquiv_symm_apply, IsAlgClosure.equivOfEquiv_symm_comp_algebraMap, height_map, NumberField.InfinitePlace.isReal_comap_iff, Ideal.polynomialQuotientEquivQuotientPolynomial_symm_mk, LaurentSeries.powerSeriesEquivSubring_apply, piCongrLeft_apply, iterate_frobeniusEquiv_symm_pow_p_pow, toSemilinearEquiv_symm_apply, NonUnitalSubring.centerToMulOpposite_symm_apply_coe, Ideal.map_of_equiv, RingAut.inv_apply, op_symm_apply_symm_apply, nonUnitalSubsemiringMap_symm_apply_coe, AddMonoidAlgebra.curryRingEquiv_symm_single, image_eq_preimage, AddMonoidAlgebra.opRingEquiv_apply, NonUnitalSubring.coe_equivMapOfInjective_apply, ofLeftInverse'_apply, AddMonoidAlgebra.mapDomainRingEquiv_single, MonoidAlgebra.curryRingEquiv_single, WittVector.StandardOneDimIsocrystal.frobenius_apply, Subring.centerCongr_symm_apply_coe, polynomial_expand_eq, coe_toEquiv_symm, iterateFrobeniusEquiv_apply, NonUnitalSubring.mem_map_equiv, Ideal.quotientMulEquivQuotientProd_fst, toAddEquiv_eq_coe, IsAlgClosure.equivOfEquiv_algebraMap, Rat.ringOfIntegersEquiv_apply_coe, Subring.ringEquivOpMop_symm_apply_coe, LocallyConstant.congrRightRingEquiv_apply_apply, HahnSeries.coeff_toMvPowerSeries_symm, MonoidAlgebra.uniqueRingEquiv_symm_apply, RingInvo.coe_ringEquiv, Ideal.map_comap_of_equiv, symm_trans_apply, congr_fun, Polynomial.coeff_opRingEquiv, Ideal.map_symm, IsPerfectClosure.equiv_comp_apply, WittVector.quotientPEquiv_mk, NumberField.RingOfIntegers.mapRingEquiv_apply, LocallyConstant.congrRightRingEquiv_symm_apply_apply, Polynomial.toFinsuppIso_apply, AddMonoidAlgebra.uniqueRingEquiv_symm_apply, Subsemiring.ringEquivOpMop_symm_apply_coe, ofNonUnitalRingHom_symm_apply, LaurentSeries.powerSeriesEquivSubring_coe_apply, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, DoubleQuot.quotQuotEquivQuotSup_quotQuotMk, toSemiRingCatIso_hom, Ring.DirectLimit.ringEquiv_symm_mk, coe_ringHom_refl, frobeniusEquiv_symm_pow_p, Padic.withValUniformEquiv_cast_apply, RingAut.coe_one, map_sum, Padic.coe_withValRingEquiv, frobenius_apply_frobeniusEquiv_symm, TruncatedWittVector.zmodEquivTrunc_apply, ofRingHom_apply, trace_quotient_eq_trace_localization_quotient, Perfection.coeff_frobeniusEquiv_symm, AdjoinRoot.Polynomial.quotQuotEquivComm_symm_mk_mk, coe_prodCongr, AddMonoidAlgebra.mapRangeRingEquiv_apply, toMulEquiv_eq_coe, LinearEquiv.conjRingEquiv_symm_apply_apply, piCongrLeft'_symm_apply, toSemilinearEquiv_apply, Perfection.lift_apply_apply_coe, zeroRingProd_apply, RingHom.ker_coe_equiv, RingHomInvPair.of_ringEquiv, PreTilt.untilt_iterate_frobeniusEquiv_symm_pow, op_symm_apply_apply, MonoidAlgebra.toRingHom_mapRangeRingEquiv, NonUnitalSubsemiring.centerToMulOpposite_apply_coe, HahnSeries.coeff_toMvPowerSeries, RCLike.realRingEquiv_apply, MonoidAlgebra.mapDomainRingEquiv_apply, PerfectionMap.surjective, AlgebraicGeometry.Proj.stalkIso'_germ, cyclotomicCharacter.spec, Subsemiring.topEquiv_symm_apply_coe, sumArrowEquivProdArrow_apply, image_eq_preimage_symm, WithVal.equivWithVal_apply, AlgEquiv.opComm_symm_apply_symm_apply, AdjoinRoot.quotMapOfEquivQuotMapCMapSpanMk_mk, Padic.coe_withValRingEquiv_symm, sofLeftInverse'_symm_apply, Polynomial.roots_X_pow_char_sub_C, Ideal.quotientInfEquivQuotientProd_fst, WittVector.quotEquivOfEq_ghostComponentModPPow, AdjoinRoot.quotEquivQuotMap_symm_apply, WittVector.exists_frobenius_solution_fractionRing_aux, IsPerfectClosure.equiv_symm_apply, toRingHom_eq_coe, map_multiset_sum, AdjoinRoot.quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk, IsLocalization.ringEquivOfRingEquiv_eq, FractionalIdeal.map_canonicalEquiv_mk0, Rat.ringOfIntegersEquiv_symm_apply_coe, coe_ringHom_ofRingHom, Polynomial.opRingEquiv_symm_C, FractionalIdeal.mem_canonicalEquiv_apply, rootsOfUnity.integer_power_of_ringEquiv', piFinTwo_symm_apply, WittVector.frobeniusEquiv_apply, symm_comp, HahnSeries.ofPowerSeries_apply, RingHom.quotientKerEquivOfRightInverse.apply, Subsemiring.ringEquivOpMop_apply, CategoryTheory.Iso.commRingCatIsoToRingEquiv_toRingHom, Polynomial.roots_expand_pow, HahnSeries.toMvPowerSeries_apply, modularCyclotomicCharacter'.spec', Module.End.ringEquivEndFinsupp_apply_apply_support, Subsemiring.map_equiv_eq_comap_symm, CategoryTheory.Iso.semiRingCatIsoToRingEquiv_toRingHom, coe_ringEquiv_lpBCF_symm, Polynomial.toFinsuppIso_symm_apply, map_eq_neg_one_iff, unop_map_list_prod, map_multiset_prod, coe_addEquiv_trans, PerfectionMap.comp_symm_equiv', IsLocalization.AtPrime.equivQuotientMapMaximalIdeal_apply_mk, DoubleQuot.quotQuotEquivComm_mk_mk, Matrix.conjTransposeRingEquiv_apply, Matrix.compRingEquiv_apply, coe_addMonoidHom_trans, Language.reverseIso_symm_apply, ofLeftInverseS_apply, NumberField.InfinitePlace.Completion.WithAbs.ratCast_equiv, Submodule.equivOpposite_symm_apply, Polynomial.natDegree_opRingEquiv, LaurentSeries.ratfuncAdicComplRingEquiv_apply, AddMonoidAlgebra.curryRingEquiv_single, DoubleQuot.quotQuotEquivQuotOfLE_symm_comp_mk, coe_toAddEquiv_symm, Equiv.ringEquiv_apply, Perfection.coeff_iterate_frobeniusEquiv_symm, Subsemiring.comap_equiv_eq_map_symm, DoubleQuot.quotQuotEquivQuotSup_symm_quotQuotMk, coe_trans, starRingEquiv_apply, WithVal.le_def, NumberField.ComplexEmbedding.isReal_comp_iff, addMonoidAlgebraRingEquivDirectSum_apply, RingAut.mul_apply, Submodule.mulMap_op, eq_symm_apply, addMonoidEndRingEquivInt_symm_apply, DoubleQuot.coe_quotQuotEquivCommโ‚, addMonoidAlgebraRingEquivDirectSum_symm_apply, image_symm_eq_preimage, coe_toMulEquiv_symm, Ideal.fst_comp_quotientInfEquivQuotientProd, coe_monoidHom_trans, Ideal.map_prodComm_prod, NonUnitalSubsemiring.centerCongr_apply_coe, Real.ringEquivCauchy_apply, Polynomial.opRingEquiv_op_C_mul_X_pow, Subring.coe_equivMapOfInjective_apply, Ideal.polynomialQuotientEquivQuotientPolynomial_map_mk, TruncatedWittVector.commutes', RingCon.quotientQuotientEquivQuotient_symm_mk, DoubleQuot.quotQuotEquivQuotSup_quot_quot_algebraMap, IsLocalization.AtPrime.equivQuotMaximalIdeal_symm_apply_mk, IsLocalization.ringEquivOfRingEquiv_apply, DoubleQuot.quotQuotEquivQuotOfLE_symm_mk, opOp_symm_apply, ClassGroup.mk_canonicalEquiv, ValuationRing.coe_equivInteger_apply, WithVal.valuation_equiv_symm, Subsemiring.mopRingEquivOp_symm_apply, RingHom.rangeRestrictFieldEquiv_apply_coe, bijective, ModuleCat.endRingEquiv_apply, WittVector.ghostEquiv_coe, RatFunc.toFractionRingRingEquiv_apply, coe_toNonUnitalRingHom, NumberField.InfiniteAdeleRing.ringEquiv_mixedSpace_apply, Module.compHom.toLinearEquiv_symm_apply, AlgEquiv.subalgebraMap_symm_apply_coe, Subsemiring.topEquiv_apply, MvPolynomial.isEmptyRingEquiv_eq_coeff_zero, ZMod.ringEquivCongr_val, LaurentSeries.mem_integers_of_powerSeries, Polynomial.mapEquiv_apply, PerfectRing.liftAux_apply, coe_iterateFrobeniusEquiv, HahnSeries.toPowerSeries_apply, Ideal.snd_comp_quotientInfEquivQuotientProd, coe_monoidHom_refl, MonoidHom.map_iterate_frobeniusEquiv_symm, ZMod.ringEquivCongr_intCast, ofHomInv'_symm_apply, RingCon.quotientKerEquivOfSurjective_mk, refl_apply, nonUnitalSubsemiringMap_apply_coe, Module.End.ringEquivEndFinsupp_symm_apply_apply, piOptionEquivProd_symm_apply, BitVec.equivFin_apply, Ideal.Factors.piQuotientEquiv_mk, Equiv.ringEquiv_symm_apply, piFinTwo_apply, PerfectionMap.lift_apply, NonUnitalSubring.centerToMulOpposite_apply_coe, prodProdProdComm_toEquiv, Subring.ringEquivOpMop_apply, HahnSeries.toPowerSeries_symm_apply_coeff, coe_toRingHom, AlgebraicGeometry.Proj.stalkIso'_symm_mk, piUnique_apply, fst_comp_coe_prodComm, WithVal.equivWithVal_symm_apply, StarRingEquiv.coe_mk, MonoidAlgebra.opRingEquiv_apply, opOp_apply, ofBijective_symm_comp, AbsoluteValue.isEquiv_iff_isHomeomorph, prodProdProdComm_toAddEquiv, NumberField.RingOfIntegers.mapRingEquiv_symm_apply, IsDedekindDomain.quotientEquivPiFactors_mk, AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot_mk_of, MonoidAlgebra.commRingEquiv_single_single, Real.ringEquivCauchy_symm_apply_cauchy, ClassGroup.mk_def, modularCyclotomicCharacter.aux_spec, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, PerfectionMap.equiv_apply, DoubleQuot.quotQuotEquivQuotOfLE_comp_quotQuotMk, map_prime_of_equiv, Int.quotientSpanNatEquivZMod_comp_castRingHom, AddMonoidAlgebra.mapRangeRingEquiv_single, Polynomial.opRingEquiv_symm_X, RingHom.map_frobeniusEquiv_symm, modularCyclotomicCharacter.toFun_spec'', FDRep.endRingEquiv_comp_ฯ, WithAbs.equivWithAbs_symm_equiv_symm_apply, cyclotomicCharacter.toFun_spec, Rat.ringOfIntegersWithValEquiv_apply, iterateFrobeniusEquiv_zero_apply, ClassGroup.equiv_mk, toSemiRingCatIso_inv, RingAut.coe_pow, DoubleQuot.quotQuotEquivQuotOfLE_quotQuotMk, OrderRingIso.coe_toRingEquiv, frobeniusEquiv_symm_apply_frobenius, coe_mulEquiv_refl, Polynomial.roots_X_pow_char_pow_sub_C, prodCongr_symm_apply, CategoryTheory.Iso.commSemiRingCatIsoToRingEquiv_toRingHom, Ideal.Factors.piQuotientEquiv_map, coe_refl, NonUnitalSubsemiring.topEquiv_symm_apply_coe, moduleEndSelfOp_symm_apply, Valuation.IsEquiv.orderRingIso_symm_apply, comp_symm, NonUnitalSubsemiring.topEquiv_apply, DoubleQuot.quotQuotEquivComm_algebraMap, IsLocalization.ringEquivOfRingEquiv_mk', AlgEquiv.coe_ringHom_commutes, RingCon.comapQuotientEquivOfSurj_mk, Module.compHom.toLinearEquiv_apply, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply
instInhabited ๐Ÿ“–CompOpโ€”
instUnique ๐Ÿ“–CompOpโ€”
ofBijective ๐Ÿ“–CompOp
6 mathmath: AlgebraicGeometry.StructureSheaf.globalSectionsIso_inv, coe_ofBijective, gelfandStarTransform_symm_apply, ofBijective_apply, comp_ofBijective_symm, ofBijective_symm_comp
ofHomInv ๐Ÿ“–CompOpโ€”
ofHomInv' ๐Ÿ“–CompOpโ€”
ofNonUnitalRingHom ๐Ÿ“–CompOp
5 mathmath: ofHomInv'_apply, ofNonUnitalRingHom_apply, symm_ofNonUnitalRingHom, ofNonUnitalRingHom_symm_apply, ofHomInv'_symm_apply
ofRingHom ๐Ÿ“–CompOp
7 mathmath: ofRingHom_coe_ringHom, ofHomInv_symm_apply, ofHomInv_apply, ofRingHom_symm_apply, ofRingHom_symm, ofRingHom_apply, coe_ringHom_ofRingHom
ofUnique ๐Ÿ“–CompOpโ€”
op ๐Ÿ“–CompOp
5 mathmath: op_apply_apply, op_apply_symm_apply, op_symm_apply_symm_apply, AlgEquiv.toRingEquiv_op, op_symm_apply_apply
opOp ๐Ÿ“–CompOp
3 mathmath: AlgEquiv.toRingEquiv_opOp, opOp_symm_apply, opOp_apply
piCongrLeft ๐Ÿ“–CompOp
2 mathmath: piCongrLeft_symm_apply, piCongrLeft_apply
piCongrLeft' ๐Ÿ“–CompOp
5 mathmath: piCongrLeft_symm_apply, piCongrLeft'_symm, piCongrLeft'_apply, piCongrLeft_apply, piCongrLeft'_symm_apply
piCongrRight ๐Ÿ“–CompOp
4 mathmath: piCongrRight_apply, piCongrRight_refl, piCongrRight_symm, piCongrRight_trans
piEquivPiSubtypeProd ๐Ÿ“–CompOp
2 mathmath: piEquivPiSubtypeProd_symm_apply, piEquivPiSubtypeProd_apply
piMulOpposite ๐Ÿ“–CompOpโ€”
piOptionEquivProd ๐Ÿ“–CompOp
2 mathmath: piOptionEquivProd_apply, piOptionEquivProd_symm_apply
piUnique ๐Ÿ“–CompOp
2 mathmath: piUnique_symm_apply, piUnique_apply
prodCongr ๐Ÿ“–CompOp
3 mathmath: prodCongr_apply, coe_prodCongr, prodCongr_symm_apply
refl ๐Ÿ“–CompOp
32 mathmath: RingAut.one_eq_refl, modularCyclotomicCharacter.id, coe_addEquiv_refl, IsLocalization.algEquiv_apply, Localization.algEquiv_apply, AlgebraicGeometry.localRingHom_comp_stalkIso_apply, toAddMonoidHom_refl, OrderRingIso.coe_ringEquiv_refl, iterateFrobeniusEquiv_zero, piCongrRight_refl, IsLocalRing.ResidueField.mapEquiv_refl, coe_addMonoidHom_refl, IsPerfectClosure.equiv_self, symm_trans_self, toNonUnitalRingHom_refl, IsPerfectClosure.equiv_comp_equiv_eq_id, ZMod.ringEquivCongr_refl, toRingHom_refl, coe_ringHom_refl, toMonoidHom_refl, IsLocalization.algEquiv_symm_apply, FractionalIdeal.mapEquiv_refl, MvPolynomial.mapEquiv_refl, mapMatrix_refl, FractionalIdeal.canonicalEquiv_self, coe_monoidHom_refl, refl_apply, symm_refl, self_trans_symm, coe_mulEquiv_refl, coe_refl, Localization.algEquiv_symm_apply
sumArrowEquivProdArrow ๐Ÿ“–CompOp
2 mathmath: sumArrowEquivProdArrow_symm_apply, sumArrowEquivProdArrow_apply
toAddEquiv ๐Ÿ“–CompOp
3 mathmath: AlgEquiv.subalgebraMap_apply_coe, toAddEquiv_eq_coe, nonUnitalSubsemiringMap_apply_coe
toAddMonoidHom ๐Ÿ“–CompOp
1 mathmath: toAddMonoidHom_refl
toEquiv ๐Ÿ“–CompOp
14 mathmath: StarAlgEquiv.restrictScalars_symm_apply, map_add', RingInvo.involution', map_mul', RCLike.realLinearIsometryEquiv_symm_apply, RCLike.complexLinearIsometryEquiv_symm_apply, toEquiv_eq_coe, StarRingEquiv.map_star', OrderRingIso.map_le_map_iff', toSemilinearEquiv_symm_apply, StarAlgEquiv.map_smul', RCLike.realLinearIsometryEquiv_apply, OrderRingIso.toFun_eq_coe, RCLike.complexLinearIsometryEquiv_apply
toMonoidHom ๐Ÿ“–CompOp
4 mathmath: Rep.Action_ฯ_eq_ฯ, toMonoidHom_refl, FDRep.of_ฯ, Rep.ihom_obj_ฯ
toMulEquiv ๐Ÿ“–CompOp
1 mathmath: toMulEquiv_eq_coe
toNonUnitalRingHom ๐Ÿ“–CompOp
10 mathmath: toNonUnitalRingHom_injective, toNonUnitalRingHom_eq_coe, toNonUnitalRingHom_refl, symm_toNonUnitalRingHom_comp_toNonUnitalRingHom, nonUnitalSubsemiringMap_symm_apply_coe, toNonUnitalRingHom_apply_symm_toNonUnitalRingHom_apply, symm_toNonUnitalRingHom_apply_toNonUnitalRingHom_apply, nonUnitalSubsemiringMap_apply_coe, toNonUnitalRingHomm_comp_symm_toNonUnitalRingHom, toNonUnitalRingHom_trans
toOpposite ๐Ÿ“–CompOp
3 mathmath: toOpposite_symm_apply, toOpposite_apply, AlgEquiv.toRingEquiv_toOpposite
toRingHom ๐Ÿ“–CompOp
43 mathmath: AlgebraicGeometry.AffineSpace.toSpecMvPolyIntEquiv_symm_apply, NumberField.InfinitePlace.isometry_embedding, AddMonoidAlgebra.toRingHom_mapRangeRingEquiv, IsLocalization.isLocalization_iff_of_ringEquiv, AlgebraicIndependent.aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, AddMonoidAlgebra.toRingHom_mapDomainRingEquiv, ModuleCat.restrictScalars_isEquivalence_of_ringEquiv, RingHom.quotientKerEquivOfSurjective_symm_comp, IsLocalization.isLocalization_iff_of_base_ringEquiv, symm_toRingHom_comp_toRingHom, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, IsFractionRing.isFractionRing_iff_of_base_ringEquiv, symm_toRingHom_apply_toRingHom_apply, IsPerfectClosure.equiv_toRingHom, toRingHom_trans, MonoidAlgebra.toRingHom_mapDomainRingEquiv, evalRingHom_mapMatrix_comp_compRingEquiv, subsemiringMap_symm_apply_coe, Algebra.WeaklyQuasiFiniteAt.comap_algEquiv, PadicInt.toZMod_eq_residueField_comp_residue, PrimeSpectrum.comapEquiv_apply, LaurentSeries.powerSeries_ext_subring, IsLocalization.isLocalization_of_base_ringEquiv, NumberField.InfinitePlace.isometry_embedding_of_isReal, MvPolynomial.isEmptyRingEquiv_symm_toRingHom, toRingHom_refl, finite, Padic.isUniformInducing_cast_withVal, MonoidAlgebra.toRingHom_mapRangeRingEquiv, Padic.coe_withValRingEquiv_symm, toRingHom_apply_symm_toRingHom_apply, surjectiveOnStalks, toRingHom_eq_coe, TruncatedWittVector.commutes, toRingHom_injective, RingHom.ker_equiv_comp, toRingHom_comp_symm_toRingHom, Algebra.QuasiFiniteAt.comap_algEquiv, WittVector.zmodEquivTrunc_compat, AlgebraicGeometry.localRingHom_comp_stalkIso, IsPerfectClosure.equiv_symm_toRingHom, Padic.isDenseInducing_cast_withVal, TruncatedWittVector.commutes_symm
trans ๐Ÿ“–CompOp
29 mathmath: FractionalIdeal.canonicalEquiv_trans_canonicalEquiv, coe_ringHom_trans, OrderRingIso.trans_toRingEquiv_aux, iterateFrobeniusEquiv_symm_add, ZMod.ringEquivCongr_trans, MonoidAlgebra.mapDomainRingEquiv_trans, AddMonoidAlgebra.mapRangeRingEquiv_trans, toRingHom_trans, coe_mulEquiv_trans, OrderRingIso.trans_toRingEquiv, trans_apply, AddMonoidAlgebra.mapDomainRingEquiv_trans, symm_trans_self, IsPerfectClosure.equiv_comp_equiv_eq_id, MonoidAlgebra.mapRangeRingEquiv_trans, IsLocalRing.ResidueField.mapEquiv_trans, iterateFrobeniusEquiv_add, symm_trans_apply, symm_trans, MvPolynomial.mapEquiv_trans, coe_addEquiv_trans, coe_addMonoidHom_trans, coe_trans, coe_monoidHom_trans, IsPerfectClosure.equiv_comp_equiv, piCongrRight_trans, mapMatrix_trans, toNonUnitalRingHom_trans, self_trans_symm
unop ๐Ÿ“–CompOp
1 mathmath: AlgEquiv.toRingEquiv_unop

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
symm
โ€”Equiv.apply_symm_apply
bijective ๐Ÿ“–mathematicalโ€”Function.Bijective
DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
โ€”EquivLike.bijective
cast_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
cast
โ€”โ€”
cast_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
symm
cast
โ€”โ€”
coe_addEquiv_refl ๐Ÿ“–mathematicalโ€”AddEquivClass.toAddEquiv
RingEquiv
instEquivLike
RingEquivClass.toAddEquivClass
instRingEquivClass
refl
AddEquiv.refl
โ€”RingEquivClass.toAddEquivClass
instRingEquivClass
coe_addEquiv_trans ๐Ÿ“–mathematicalโ€”AddEquivClass.toAddEquiv
RingEquiv
instEquivLike
RingEquivClass.toAddEquivClass
instRingEquivClass
trans
AddEquiv.trans
โ€”RingEquivClass.toAddEquivClass
instRingEquivClass
coe_addMonoidHom_refl ๐Ÿ“–mathematicalโ€”AddMonoidHomClass.toAddMonoidHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
EquivLike.toFunLike
instEquivLike
RingHomClass.toAddMonoidHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
refl
AddMonoidHom.id
โ€”RingHomClass.toAddMonoidHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
coe_addMonoidHom_trans ๐Ÿ“–mathematicalโ€”AddMonoidHomClass.toAddMonoidHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
EquivLike.toFunLike
instEquivLike
NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
trans
AddMonoidHom.comp
RingHomClass.toAddMonoidHomClass
RingEquivClass.toRingHomClass
โ€”NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
coe_mk ๐Ÿ“–mathematicalEquiv.toFunDFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
Equiv
Equiv.instEquivLike
โ€”โ€”
coe_monoidHom_refl ๐Ÿ“–mathematicalโ€”MonoidHomClass.toMonoidHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
EquivLike.toFunLike
instEquivLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
refl
MonoidHom.id
โ€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
coe_monoidHom_trans ๐Ÿ“–mathematicalโ€”MonoidHomClass.toMonoidHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
EquivLike.toFunLike
instEquivLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
trans
MonoidHom.comp
โ€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
coe_mulEquiv_refl ๐Ÿ“–mathematicalโ€”MulEquivClass.toMulEquiv
RingEquiv
instEquivLike
RingEquivClass.toMulEquivClass
instRingEquivClass
refl
MulEquiv.refl
โ€”RingEquivClass.toMulEquivClass
instRingEquivClass
coe_mulEquiv_trans ๐Ÿ“–mathematicalโ€”MulEquivClass.toMulEquiv
RingEquiv
instEquivLike
RingEquivClass.toMulEquivClass
instRingEquivClass
trans
MulEquiv.trans
โ€”RingEquivClass.toMulEquivClass
instRingEquivClass
coe_nonUnitalRingHom_inj_iff ๐Ÿ“–mathematicalโ€”NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
โ€”RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
ext
NonUnitalRingHom.ext_iff
coe_ofBijective ๐Ÿ“–mathematicalFunction.Bijective
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
ofBijective
โ€”โ€”
coe_prodCongr ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
prodCongr
โ€”โ€”
coe_refl ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
refl
โ€”โ€”
coe_ringHom_inj_iff ๐Ÿ“–mathematicalโ€”RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
โ€”RingEquivClass.toRingHomClass
instRingEquivClass
ext
RingHom.ext_iff
coe_ringHom_ofRingHom ๐Ÿ“–mathematicalRingHom.comp
RingHom.id
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
ofRingHom
โ€”RingEquivClass.toRingHomClass
instRingEquivClass
coe_ringHom_refl ๐Ÿ“–mathematicalโ€”RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
refl
RingHom.id
โ€”RingEquivClass.toRingHomClass
instRingEquivClass
coe_ringHom_trans ๐Ÿ“–mathematicalโ€”RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
trans
RingHom.comp
โ€”RingEquivClass.toRingHomClass
instRingEquivClass
coe_toAddEquiv ๐Ÿ“–mathematicalโ€”DFunLike.coe
AddEquiv
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquivClass.toAddEquiv
RingEquiv
instEquivLike
RingEquivClass.toAddEquivClass
instRingEquivClass
โ€”RingEquivClass.toAddEquivClass
instRingEquivClass
coe_toAddEquiv_symm ๐Ÿ“–mathematicalโ€”AddEquivClass.toAddEquiv
RingEquiv
instEquivLike
RingEquivClass.toAddEquivClass
instRingEquivClass
symm
AddEquiv.symm
โ€”RingEquivClass.toAddEquivClass
instRingEquivClass
coe_toEquiv ๐Ÿ“–mathematicalโ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
EquivLike.toEquiv
RingEquiv
instEquivLike
โ€”โ€”
coe_toEquiv_symm ๐Ÿ“–mathematicalโ€”EquivLike.toEquiv
RingEquiv
instEquivLike
symm
Equiv.symm
โ€”โ€”
coe_toMulEquiv ๐Ÿ“–mathematicalโ€”DFunLike.coe
MulEquiv
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.toMulEquiv
RingEquiv
instEquivLike
RingEquivClass.toMulEquivClass
instRingEquivClass
โ€”RingEquivClass.toMulEquivClass
instRingEquivClass
coe_toMulEquiv_symm ๐Ÿ“–mathematicalโ€”MulEquivClass.toMulEquiv
RingEquiv
instEquivLike
RingEquivClass.toMulEquivClass
instRingEquivClass
symm
MulEquiv.symm
โ€”RingEquivClass.toMulEquivClass
instRingEquivClass
coe_toNonUnitalRingHom ๐Ÿ“–mathematicalโ€”DFunLike.coe
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
โ€”RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
coe_toRingHom ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingHom
RingHom.instFunLike
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
โ€”RingEquivClass.toRingHomClass
instRingEquivClass
coe_trans ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
trans
โ€”โ€”
comp_ofBijective_symm ๐Ÿ“–mathematicalFunction.Bijective
DFunLike.coe
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.comp
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
symm
ofBijective
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.id
โ€”NonUnitalRingHom.ext
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
NonUnitalRingHom.instNonUnitalRingHomClass
injective
apply_symm_apply
comp_symm ๐Ÿ“–mathematicalโ€”RingHom.comp
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
symm
RingHom.id
โ€”RingHom.ext
RingEquivClass.toRingHomClass
instRingEquivClass
apply_symm_apply
congr_arg ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
โ€”DFunLike.congr_arg
congr_fun ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
โ€”DFunLike.congr_fun
eq_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
symm
โ€”Equiv.eq_symm_apply
ext ๐Ÿ“–โ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
โ€”โ€”DFunLike.ext
ext_iff ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
โ€”ext
image_eq_preimage ๐Ÿ“–mathematicalโ€”Set.image
DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
Set.preimage
symm
โ€”image_eq_preimage_symm
image_eq_preimage_symm ๐Ÿ“–mathematicalโ€”Set.image
DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
Set.preimage
symm
โ€”Equiv.image_eq_preimage_symm
image_symm_eq_preimage ๐Ÿ“–mathematicalโ€”Set.image
DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
symm
Set.preimage
โ€”Equiv.image_symm_eq_preimage
injective ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
โ€”EquivLike.injective
instRingEquivClass ๐Ÿ“–mathematicalโ€”RingEquivClass
RingEquiv
instEquivLike
โ€”map_mul'
map_add'
invFun_eq_symm ๐Ÿ“–mathematicalโ€”EquivLike.inv
RingEquiv
instEquivLike
DFunLike.coe
EquivLike.toFunLike
symm
โ€”โ€”
map_add ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
โ€”map_add
AddEquivClass.instAddHomClass
RingEquivClass.toAddEquivClass
instRingEquivClass
map_add' ๐Ÿ“–mathematicalโ€”Equiv.toFun
toEquiv
โ€”โ€”
map_eq_neg_one_iff ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
โ€”neg_eq_iff_eq_neg
map_neg
RingHomClass.toAddMonoidHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
map_eq_one_iff
map_eq_one_iff ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
โ€”EmbeddingLike.map_eq_one_iff
EquivLike.toEmbeddingLike
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
map_eq_zero_iff ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
โ€”EmbeddingLike.map_eq_zero_iff
EquivLike.toEmbeddingLike
AddMonoidHomClass.toZeroHomClass
NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
map_mul ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
โ€”map_mul
MulEquivClass.instMulHomClass
RingEquivClass.toMulEquivClass
instRingEquivClass
map_mul' ๐Ÿ“–mathematicalโ€”Equiv.toFun
toEquiv
โ€”โ€”
map_ne_one_iff ๐Ÿ“–โ€”โ€”โ€”โ€”EmbeddingLike.map_ne_one_iff
EquivLike.toEmbeddingLike
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
map_ne_zero_iff ๐Ÿ“–โ€”โ€”โ€”โ€”EmbeddingLike.map_ne_zero_iff
EquivLike.toEmbeddingLike
AddMonoidHomClass.toZeroHomClass
NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
map_neg ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
โ€”map_neg
NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
map_neg_one ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
โ€”map_neg
map_one
map_one ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
โ€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
map_pow ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
โ€”map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
map_sub ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
โ€”map_sub
NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
map_zero ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
โ€”map_zero
AddMonoidHomClass.toZeroHomClass
NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
mk_coe ๐Ÿ“–โ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
Equiv.toFun
โ€”โ€”ext
mk_coe' ๐Ÿ“–mathematicalDFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
Equiv.toFun
symmโ€”Function.Bijective.injective
symm_bijective
ext
ofBijective_apply ๐Ÿ“–mathematicalFunction.Bijective
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
ofBijective
โ€”โ€”
ofBijective_symm_comp ๐Ÿ“–mathematicalFunction.Bijective
DFunLike.coe
NonUnitalRingHom
NonUnitalRingHom.instFunLike
NonUnitalRingHom.comp
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
symm
ofBijective
NonUnitalRingHom.instNonUnitalRingHomClass
NonUnitalRingHom.id
โ€”NonUnitalRingHom.ext
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
NonUnitalRingHom.instNonUnitalRingHomClass
injective
apply_symm_apply
ofHomInv'_apply ๐Ÿ“–mathematicalNonUnitalRingHom.comp
NonUnitalRingHom.id
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
ofNonUnitalRingHom
NonUnitalRingHom
NonUnitalRingHom.instFunLike
โ€”ofNonUnitalRingHom_apply
ofHomInv'_symm_apply ๐Ÿ“–mathematicalNonUnitalRingHom.comp
NonUnitalRingHom.id
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
ofNonUnitalRingHom
NonUnitalRingHom
NonUnitalRingHom.instFunLike
โ€”ofNonUnitalRingHom_symm_apply
ofHomInv_apply ๐Ÿ“–mathematicalRingHom.comp
RingHom.id
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
ofRingHom
RingHom
RingHom.instFunLike
โ€”ofRingHom_apply
ofHomInv_symm_apply ๐Ÿ“–mathematicalRingHom.comp
RingHom.id
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
ofRingHom
RingHom
RingHom.instFunLike
โ€”ofRingHom_symm_apply
ofNonUnitalRingHom_apply ๐Ÿ“–mathematicalNonUnitalRingHom.comp
NonUnitalRingHom.id
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
ofNonUnitalRingHom
NonUnitalRingHom
NonUnitalRingHom.instFunLike
โ€”โ€”
ofNonUnitalRingHom_symm_apply ๐Ÿ“–mathematicalNonUnitalRingHom.comp
NonUnitalRingHom.id
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
ofNonUnitalRingHom
NonUnitalRingHom
NonUnitalRingHom.instFunLike
โ€”โ€”
ofRingHom_apply ๐Ÿ“–mathematicalRingHom.comp
RingHom.id
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
ofRingHom
RingHom
RingHom.instFunLike
โ€”โ€”
ofRingHom_coe_ringHom ๐Ÿ“–mathematicalRingHom.comp
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
RingHom.id
ofRingHomโ€”RingEquivClass.toRingHomClass
instRingEquivClass
ext
ofRingHom_symm ๐Ÿ“–mathematicalRingHom.comp
RingHom.id
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
ofRingHom
โ€”โ€”
ofRingHom_symm_apply ๐Ÿ“–mathematicalRingHom.comp
RingHom.id
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
ofRingHom
RingHom
RingHom.instFunLike
โ€”โ€”
opOp_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
MulOpposite
MulOpposite.instMul
MulOpposite.instAdd
EquivLike.toFunLike
instEquivLike
opOp
MulOpposite.op
โ€”โ€”
opOp_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
MulOpposite
MulOpposite.instMul
MulOpposite.instAdd
EquivLike.toFunLike
instEquivLike
symm
opOp
MulOpposite.unop
โ€”โ€”
op_apply_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
MulOpposite
MulOpposite.instMul
MulOpposite.instAdd
EquivLike.toFunLike
instEquivLike
Equiv
Equiv.instEquivLike
op
MulOpposite.op
MulOpposite.unop
โ€”โ€”
op_apply_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
MulOpposite
MulOpposite.instMul
MulOpposite.instAdd
EquivLike.toFunLike
instEquivLike
symm
Equiv
Equiv.instEquivLike
op
MulOpposite.op
AddEquiv
AddEquiv.instEquivLike
AddEquiv.symm
AddEquivClass.toAddEquiv
RingEquivClass.toAddEquivClass
instRingEquivClass
MulOpposite.unop
โ€”โ€”
op_symm_apply_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
Equiv
MulOpposite
MulOpposite.instMul
MulOpposite.instAdd
Equiv.instEquivLike
Equiv.symm
op
MulOpposite.unop
MulOpposite.op
โ€”โ€”
op_symm_apply_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
symm
Equiv
MulOpposite
MulOpposite.instMul
MulOpposite.instAdd
Equiv.instEquivLike
Equiv.symm
op
MulOpposite.unop
AddEquiv
AddEquiv.instEquivLike
AddEquiv.symm
AddEquivClass.toAddEquiv
RingEquivClass.toAddEquivClass
instRingEquivClass
MulOpposite.op
โ€”โ€”
piCongrLeft'_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Pi.instAdd
Distrib.toAdd
instEquivLike
piCongrLeft'
โ€”โ€”
piCongrLeft'_symm ๐Ÿ“–mathematicalโ€”symm
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instAdd
Distrib.toAdd
piCongrLeft'
Equiv.symm
โ€”MulEquiv.map_mul'
MulEquiv.symm_map_mul
Equiv.piCongrLeft'_symm
AddEquiv.map_add'
piCongrLeft'_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Pi.instMul
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instAdd
Distrib.toAdd
instEquivLike
symm
piCongrLeft'
Equiv.symm_apply_apply
โ€”โ€”
piCongrLeft_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Pi.instMul
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instAdd
Distrib.toAdd
instEquivLike
piCongrLeft
MulEquiv
MulEquiv.instEquivLike
MulEquiv.symm
MulEquivClass.toMulEquiv
RingEquivClass.toMulEquivClass
instRingEquivClass
piCongrLeft'
Equiv.symm
โ€”โ€”
piCongrLeft_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Pi.instAdd
Distrib.toAdd
instEquivLike
symm
piCongrLeft
piCongrLeft'
Equiv.symm
โ€”โ€”
piCongrRight_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
piCongrRight
โ€”โ€”
piCongrRight_refl ๐Ÿ“–mathematicalโ€”piCongrRight
refl
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
Pi.instMul
Pi.instAdd
โ€”โ€”
piCongrRight_symm ๐Ÿ“–mathematicalโ€”symm
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instAdd
Distrib.toAdd
piCongrRight
โ€”โ€”
piCongrRight_trans ๐Ÿ“–mathematicalโ€”trans
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instAdd
Distrib.toAdd
piCongrRight
โ€”โ€”
piEquivPiSubtypeProd_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Prod.instMul
Pi.instAdd
Distrib.toAdd
Prod.instAdd
EquivLike.toFunLike
instEquivLike
piEquivPiSubtypeProd
โ€”โ€”
piEquivPiSubtypeProd_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Prod.instMul
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Prod.instAdd
Pi.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
piEquivPiSubtypeProd
โ€”โ€”
piOptionEquivProd_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Prod.instMul
Pi.instAdd
Distrib.toAdd
Prod.instAdd
EquivLike.toFunLike
instEquivLike
piOptionEquivProd
โ€”โ€”
piOptionEquivProd_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instMul
Prod.instAdd
Distrib.toAdd
Pi.instAdd
EquivLike.toFunLike
instEquivLike
symm
piOptionEquivProd
โ€”โ€”
piUnique_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Unique.instInhabited
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
piUnique
โ€”โ€”
piUnique_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Unique.instInhabited
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Pi.instMul
Distrib.toAdd
Pi.instAdd
EquivLike.toFunLike
instEquivLike
symm
piUnique
uniqueElim
โ€”โ€”
prodCongr_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
prodCongr
โ€”โ€”
prodCongr_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
prodCongr
Equiv
Equiv.instEquivLike
Equiv.symm
EquivLike.toEquiv
โ€”โ€”
refl_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
refl
โ€”โ€”
self_trans_symm ๐Ÿ“–mathematicalโ€”trans
symm
refl
โ€”ext
Equiv.left_inv
sumArrowEquivProdArrow_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instMul
Pi.instAdd
Distrib.toAdd
Prod.instAdd
EquivLike.toFunLike
instEquivLike
sumArrowEquivProdArrow
Equiv
Equiv.instEquivLike
Equiv.sumArrowEquivProdArrow
โ€”โ€”
sumArrowEquivProdArrow_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
Prod.instMul
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Pi.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
sumArrowEquivProdArrow
Equiv
Equiv.instEquivLike
Equiv.symm
Equiv.sumArrowEquivProdArrow
โ€”โ€”
surjective ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
โ€”EquivLike.surjective
symm_apply_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
symm
โ€”Equiv.symm_apply_apply
symm_apply_eq ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
symm
โ€”Equiv.symm_apply_eq
symm_bijective ๐Ÿ“–mathematicalโ€”Function.Bijective
RingEquiv
symm
โ€”Function.bijective_iff_has_inverse
symm_symm
symm_comp ๐Ÿ“–mathematicalโ€”RingHom.comp
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
symm
RingHom.id
โ€”RingHom.ext
RingEquivClass.toRingHomClass
instRingEquivClass
symm_apply_apply
symm_mk ๐Ÿ“–mathematicalEquiv.toFunsymmโ€”โ€”
symm_ofNonUnitalRingHom ๐Ÿ“–mathematicalNonUnitalRingHom.comp
NonUnitalRingHom.id
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
ofNonUnitalRingHom
โ€”โ€”
symm_refl ๐Ÿ“–mathematicalโ€”symm
refl
โ€”โ€”
symm_symm ๐Ÿ“–mathematicalโ€”symmโ€”โ€”
symm_toNonUnitalRingHom_apply_toNonUnitalRingHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
NonUnitalRingHom
NonUnitalRingHom.instFunLike
toNonUnitalRingHom
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
โ€”Equiv.symm_apply_apply
symm_toNonUnitalRingHom_comp_toNonUnitalRingHom ๐Ÿ“–mathematicalโ€”NonUnitalRingHom.comp
toNonUnitalRingHom
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
NonUnitalRingHom.id
โ€”NonUnitalRingHom.ext
symm_toNonUnitalRingHom_apply_toNonUnitalRingHom_apply
symm_toRingHom_apply_toRingHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingHom
RingHom.instFunLike
toRingHom
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
โ€”Equiv.symm_apply_apply
symm_toRingHom_comp_toRingHom ๐Ÿ“–mathematicalโ€”RingHom.comp
toRingHom
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
RingHom.id
โ€”symm_comp
symm_trans ๐Ÿ“–mathematicalโ€”symm
trans
โ€”โ€”
symm_trans_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
symm
trans
โ€”โ€”
symm_trans_self ๐Ÿ“–mathematicalโ€”trans
symm
refl
โ€”ext
Equiv.right_inv
toAddEquiv_eq_coe ๐Ÿ“–mathematicalโ€”toAddEquiv
AddEquivClass.toAddEquiv
RingEquiv
instEquivLike
RingEquivClass.toAddEquivClass
instRingEquivClass
โ€”โ€”
toAddMonoidHom_refl ๐Ÿ“–mathematicalโ€”toAddMonoidHom
refl
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
AddMonoidHom.id
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
โ€”โ€”
toAddMonoidMom_commutes ๐Ÿ“–mathematicalโ€”RingHom.toAddMonoidHom
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
AddEquiv.toAddMonoidHom
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddEquivClass.toAddEquiv
RingEquivClass.toAddEquivClass
โ€”RingEquivClass.toRingHomClass
instRingEquivClass
toEquiv_commutes ๐Ÿ“–mathematicalโ€”AddEquiv.toEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddEquivClass.toAddEquiv
RingEquiv
Distrib.toMul
instEquivLike
RingEquivClass.toAddEquivClass
instRingEquivClass
MulEquiv.toEquiv
MulEquivClass.toMulEquiv
RingEquivClass.toMulEquivClass
โ€”RingEquivClass.toAddEquivClass
instRingEquivClass
toEquiv_eq_coe ๐Ÿ“–mathematicalโ€”toEquiv
EquivLike.toEquiv
RingEquiv
instEquivLike
โ€”โ€”
toMonoidHom_commutes ๐Ÿ“–mathematicalโ€”RingHom.toMonoidHom
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
MulEquiv.toMonoidHom
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulEquivClass.toMulEquiv
RingEquivClass.toMulEquivClass
โ€”RingEquivClass.toRingHomClass
instRingEquivClass
toMonoidHom_refl ๐Ÿ“–mathematicalโ€”toMonoidHom
refl
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
MonoidHom.id
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
โ€”โ€”
toMulEquiv_eq_coe ๐Ÿ“–mathematicalโ€”toMulEquiv
MulEquivClass.toMulEquiv
RingEquiv
instEquivLike
RingEquivClass.toMulEquivClass
instRingEquivClass
โ€”โ€”
toNonUnitalRingHom_apply_symm_toNonUnitalRingHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
NonUnitalRingHom
NonUnitalRingHom.instFunLike
toNonUnitalRingHom
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
โ€”Equiv.apply_symm_apply
toNonUnitalRingHom_commutes ๐Ÿ“–mathematicalโ€”NonUnitalRingHomClass.toNonUnitalRingHom
RingHom
NonAssocSemiring.toNonUnitalNonAssocSemiring
RingHom.instFunLike
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
RingEquivClass.toNonUnitalRingHomClass
โ€”RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
RingEquivClass.toRingHomClass
instRingEquivClass
toNonUnitalRingHom_eq_coe ๐Ÿ“–mathematicalโ€”toNonUnitalRingHom
NonUnitalRingHomClass.toNonUnitalRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toNonUnitalRingHomClass
instRingEquivClass
โ€”โ€”
toNonUnitalRingHom_injective ๐Ÿ“–mathematicalโ€”RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
NonUnitalRingHom
toNonUnitalRingHom
โ€”ext
NonUnitalRingHom.ext_iff
toNonUnitalRingHom_refl ๐Ÿ“–mathematicalโ€”toNonUnitalRingHom
refl
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
NonUnitalRingHom.id
โ€”โ€”
toNonUnitalRingHom_trans ๐Ÿ“–mathematicalโ€”toNonUnitalRingHom
trans
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
NonUnitalRingHom.comp
โ€”โ€”
toNonUnitalRingHomm_comp_symm_toNonUnitalRingHom ๐Ÿ“–mathematicalโ€”NonUnitalRingHom.comp
toNonUnitalRingHom
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Distrib.toAdd
NonUnitalRingHom.id
โ€”NonUnitalRingHom.ext
toNonUnitalRingHom_apply_symm_toNonUnitalRingHom_apply
toOpposite_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
MulOpposite
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
MulOpposite.instMul
Distrib.toAdd
MulOpposite.instAdd
EquivLike.toFunLike
instEquivLike
toOpposite
MulOpposite.op
โ€”โ€”
toOpposite_symm_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
MulOpposite
MulOpposite.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalSemiring.toNonUnitalNonAssocSemiring
NonUnitalCommSemiring.toNonUnitalSemiring
MulOpposite.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
toOpposite
MulOpposite.unop
โ€”โ€”
toRingHom_apply_symm_toRingHom_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingHom
RingHom.instFunLike
toRingHom
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
โ€”Equiv.apply_symm_apply
toRingHom_comp_symm_toRingHom ๐Ÿ“–mathematicalโ€”RingHom.comp
toRingHom
symm
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
RingHom.id
โ€”comp_symm
toRingHom_eq_coe ๐Ÿ“–mathematicalโ€”toRingHom
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
โ€”โ€”
toRingHom_injective ๐Ÿ“–mathematicalโ€”RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
RingHom
toRingHom
โ€”ext
RingHom.ext_iff
toRingHom_refl ๐Ÿ“–mathematicalโ€”toRingHom
refl
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
RingHom.id
โ€”โ€”
toRingHom_trans ๐Ÿ“–mathematicalโ€”toRingHom
trans
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
RingHom.comp
โ€”โ€”
trans_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingEquiv
EquivLike.toFunLike
instEquivLike
trans
โ€”โ€”

RingEquiv.Simps

Definitions

NameCategoryTheorems
symm_apply ๐Ÿ“–CompOpโ€”

RingEquiv.symm_mk

Definitions

NameCategoryTheorems
aux ๐Ÿ“–CompOpโ€”

RingEquivClass

Definitions

NameCategoryTheorems
toRingEquiv ๐Ÿ“–CompOp
40 mathmath: AlgEquiv.coe_restrictScalars_symm, OrderRingIso.trans_toRingEquiv_aux, AlgEquiv.toRingEquiv_toRingHom, PowerBasis.quotientEquivQuotientMinpolyMap_apply, AlgebraicGeometry.localRingHom_comp_stalkIso_apply, StarRingEquiv.toRingEquiv_eq_coe, DoubleQuot.quotQuotEquivQuotOfLEโ‚_symm_toRingEquiv, OrderRingIso.toRingEquiv_eq_coe, BialgEquiv.toRingEquiv_toRingHom, IsPrimitiveRoot.autToPow_eq_modularCyclotomicCharacter, OrderRingIso.coe_ringEquiv_refl, AlgEquiv.op_apply_symm_apply, StarAlgEquiv.toRingEquiv_symm, AlgEquiv.coe_ringEquiv_injective, StarAlgEquiv.symm_to_ringEquiv, StarAlgEquiv.toRingEquiv_eq_coe, AlgEquiv.coe_ringEquiv, AlgEquiv.toRingEquiv_opOp, AlgEquiv.op_symm_apply_symm_apply, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, NumberField.RingOfIntegers.withValEquiv_apply, AlgEquiv.coe_restrictScalars, IsLocalization.algEquivOfAlgEquiv_symm_apply, AlgEquiv.opComm_apply_symm_apply, RingInvo.coe_ringEquiv, DoubleQuot.quotQuotEquivCommโ‚_toRingEquiv, DoubleQuot.quotQuotEquivQuotSupโ‚_toRingEquiv, AlgEquiv.opComm_symm_apply_symm_apply, DoubleQuot.quotQuotEquivQuotOfLEโ‚_toRingEquiv, AlgEquiv.toRingEquiv_toOpposite, StarAlgEquiv.to_ringEquiv_symm, AlgEquiv.symm_toRingEquiv, MulSemiringAction.toRingEquiv_algEquiv, AlgEquiv.subalgebraMap_symm_apply_coe, DoubleQuot.quotQuotEquivQuotSupโ‚_symm_toRingEquiv, AlgEquiv.toRingEquiv_symm, Rat.ringOfIntegersWithValEquiv_apply, OrderRingIso.coe_toRingEquiv, AlgEquiv.coe_ringHom_commutes, AlgEquiv.toRingEquiv_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
map_add ๐Ÿ“–mathematicalโ€”DFunLike.coe
EquivLike.toFunLike
โ€”โ€”
toAddEquivClass ๐Ÿ“–mathematicalโ€”AddEquivClassโ€”map_add
toMulEquivClass ๐Ÿ“–mathematicalโ€”MulEquivClassโ€”โ€”
toNonUnitalRingHomClass ๐Ÿ“–mathematicalโ€”NonUnitalRingHomClass
EquivLike.toFunLike
โ€”MulEquivClass.map_mul
toMulEquivClass
map_add
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
toAddEquivClass
toRingHomClass ๐Ÿ“–mathematicalโ€”RingHomClass
EquivLike.toFunLike
โ€”MulEquivClass.map_mul
toMulEquivClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MulEquivClass.toMonoidWithZeroHomClass
map_add
map_zero
MonoidWithZeroHomClass.toZeroHomClass

RingHom

Definitions

NameCategoryTheorems
inverse ๐Ÿ“–CompOp
1 mathmath: inverse_apply

Theorems

NameKindAssumesProvesValidatesDepends On
inverse_apply ๐Ÿ“–mathematicalDFunLike.coe
RingHom
instFunLike
inverseโ€”โ€”

(root)

Definitions

NameCategoryTheorems
RingEquivClass ๐Ÿ“–CompData
7 mathmath: RingEquiv.instRingEquivClass, AlgEquivClass.toRingEquivClass, StarRingEquiv.instRingEquivClass, OrderRingIso.instRingEquivClass, NonUnitalAlgEquivClass.toRingEquivClass, RingInvoClass.toRingEquivClass, StarRingEquivClass.toRingEquivClass
instCoeTCRingEquivOfRingEquivClass ๐Ÿ“–CompOpโ€”
ยซterm_โ‰ƒ+*_ยป ๐Ÿ“–CompOpโ€”

---

โ† Back to Index