Documentation Verification Report

InjSurj

πŸ“ Source: Mathlib/Algebra/Ring/InjSurj.lean

Statistics

MetricCount
DefinitionsinstHasDistribNeg, addCommGroupWithOne, addCommMonoidWithOne, addGroupWithOne, addMonoidWithOne, commRing, commSemiring, distrib, hasDistribNeg, nonAssocRing, nonAssocSemiring, nonUnitalCommRing, nonUnitalCommSemiring, nonUnitalNonAssocCommRing, nonUnitalNonAssocCommSemiring, nonUnitalNonAssocRing, nonUnitalNonAssocSemiring, nonUnitalRing, nonUnitalSemiring, semiring, addCommGroupWithOne, addCommMonoidWithOne, addGroupWithOne, addMonoidWithOne, commRing, commSemiring, distrib, hasDistribNeg, nonAssocRing, nonAssocSemiring, nonUnitalCommRing, nonUnitalCommSemiring, nonUnitalNonAssocCommRing, nonUnitalNonAssocCommSemiring, nonUnitalNonAssocRing, nonUnitalNonAssocSemiring, nonUnitalRing, nonUnitalSemiring, semiring
39
TheoremsleftDistribClass, rightDistribClass, leftDistribClass, rightDistribClass
4
Total43

AddOpposite

Definitions

NameCategoryTheorems
instHasDistribNeg πŸ“–CompOpβ€”

Function.Injective

Definitions

NameCategoryTheorems
addCommGroupWithOne πŸ“–CompOpβ€”
addCommMonoidWithOne πŸ“–CompOpβ€”
addGroupWithOne πŸ“–CompOpβ€”
addMonoidWithOne πŸ“–CompOpβ€”
commRing πŸ“–CompOpβ€”
commSemiring πŸ“–CompOpβ€”
distrib πŸ“–CompOpβ€”
hasDistribNeg πŸ“–CompOpβ€”
nonAssocRing πŸ“–CompOpβ€”
nonAssocSemiring πŸ“–CompOpβ€”
nonUnitalCommRing πŸ“–CompOpβ€”
nonUnitalCommSemiring πŸ“–CompOpβ€”
nonUnitalNonAssocCommRing πŸ“–CompOpβ€”
nonUnitalNonAssocCommSemiring πŸ“–CompOpβ€”
nonUnitalNonAssocRing πŸ“–CompOpβ€”
nonUnitalNonAssocSemiring πŸ“–CompOpβ€”
nonUnitalRing πŸ“–CompOpβ€”
nonUnitalSemiring πŸ“–CompOpβ€”
semiring πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
leftDistribClass πŸ“–mathematicalβ€”LeftDistribClassβ€”left_distrib
rightDistribClass πŸ“–mathematicalβ€”RightDistribClassβ€”right_distrib

Function.Surjective

Definitions

NameCategoryTheorems
addCommGroupWithOne πŸ“–CompOpβ€”
addCommMonoidWithOne πŸ“–CompOpβ€”
addGroupWithOne πŸ“–CompOpβ€”
addMonoidWithOne πŸ“–CompOpβ€”
commRing πŸ“–CompOpβ€”
commSemiring πŸ“–CompOpβ€”
distrib πŸ“–CompOpβ€”
hasDistribNeg πŸ“–CompOpβ€”
nonAssocRing πŸ“–CompOpβ€”
nonAssocSemiring πŸ“–CompOpβ€”
nonUnitalCommRing πŸ“–CompOpβ€”
nonUnitalCommSemiring πŸ“–CompOpβ€”
nonUnitalNonAssocCommRing πŸ“–CompOpβ€”
nonUnitalNonAssocCommSemiring πŸ“–CompOpβ€”
nonUnitalNonAssocRing πŸ“–CompOpβ€”
nonUnitalNonAssocSemiring πŸ“–CompOpβ€”
nonUnitalRing πŸ“–CompOpβ€”
nonUnitalSemiring πŸ“–CompOpβ€”
semiring πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
leftDistribClass πŸ“–mathematicalβ€”LeftDistribClassβ€”forall₃
left_distrib
rightDistribClass πŸ“–mathematicalβ€”RightDistribClassβ€”forall₃
right_distrib

---

← Back to Index