Documentation Verification Report

NonZeroDivisors

πŸ“ Source: Mathlib/Algebra/Ring/NonZeroDivisors.lean

Statistics

MetricCount
Definitions0
Theoremsnsmul_injective, nsmul_injective, isUnit_of_finite, pow_injective, pow_right_inj, pow_right_injective, pow_right_injectiveβ‚€, pow_right_injβ‚€, isUnit_of_finite, pow_injective, dvd_cancel_left_coe_nonZeroDivisors, dvd_cancel_left_mem_nonZeroDivisors, dvd_cancel_right_coe_nonZeroDivisors, dvd_cancel_right_mem_nonZeroDivisors, isLeftRegular_iff_mem_nonZeroDivisorsLeft, isRegular_iff_isUnit_of_finite, isRegular_iff_mem_nonZeroDivisors, isRightRegular_iff_mem_nonZeroDivisorsRight, isUnit_iff_mem_nonZeroDivisors_of_finite, le_nonZeroDivisorsLeft_iff_isLeftRegular, le_nonZeroDivisorsRight_iff_isRightRegular, le_nonZeroDivisors_iff_isRegular, mul_cancel_left_coe_nonZeroDivisors, mul_cancel_left_mem_nonZeroDivisors, mul_cancel_left_mem_nonZeroDivisorsLeft, mul_cancel_right_coe_nonZeroDivisors, mul_cancel_right_mem_nonZeroDivisors, mul_cancel_right_mem_nonZeroDivisorsRight
28
Total28

IsAddLeftRegular

Theorems

NameKindAssumesProvesValidatesDepends On
nsmul_injective πŸ“–mathematicalIsAddLeftRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMulβ€”nsmul_eq_zero_iff_left
add_left_eq_self_iff
nsmul
add_nsmul

IsAddRightRegular

Theorems

NameKindAssumesProvesValidatesDepends On
nsmul_injective πŸ“–mathematicalIsAddRightRegular
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoid.toNatSMulβ€”AddOpposite.unop_injective
IsAddLeftRegular.nsmul_injective
AddOpposite.instAddTorsionFree
isAddLeftRegular_op
Iff.not
AddOpposite.op_eq_zero_iff

IsLeftRegular

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit_of_finite πŸ“–mathematicalIsLeftRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsUnitβ€”IsUnit.isUnit_iff_mulLeft_bijective
Finite.injective_iff_bijective
pow_injective πŸ“–mathematicalIsLeftRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowβ€”pow_eq_one_iff_right
mul_left_eq_self_iff
pow
pow_add

IsMulTorsionFree

Theorems

NameKindAssumesProvesValidatesDepends On
pow_right_inj πŸ“–mathematicalβ€”Monoid.toNatPow
RightCancelMonoid.toMonoid
CancelMonoid.toRightCancelMonoid
β€”pow_right_injective
pow_right_injective πŸ“–mathematicalβ€”Monoid.toNatPow
RightCancelMonoid.toMonoid
CancelMonoid.toRightCancelMonoid
β€”IsLeftRegular.pow_injective
IsLeftRegular.all
LeftCancelSemigroup.toIsLeftCancelMul
pow_right_injectiveβ‚€ πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
β€”IsLeftRegular.pow_injective
IsLeftCancelMulZero.mul_left_cancel_of_ne_zero
pow_right_injβ‚€ πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
β€”pow_right_injectiveβ‚€

IsRightRegular

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit_of_finite πŸ“–mathematicalIsRightRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsUnitβ€”IsUnit.isUnit_iff_mulRight_bijective
Finite.injective_iff_bijective
pow_injective πŸ“–mathematicalIsRightRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowβ€”MulOpposite.unop_injective
IsLeftRegular.pow_injective
AddOpposite.instMulTorsionFree
isLeftRegular_op
Iff.not
MulOpposite.op_eq_one_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_cancel_left_coe_nonZeroDivisors πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
Ring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”dvd_cancel_left_mem_nonZeroDivisors
Subtype.prop
dvd_cancel_left_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
Semiring.toNonUnitalSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”IsLeftRegular.dvd_cancel_left
isLeftRegular_iff_mem_nonZeroDivisorsLeft
dvd_cancel_right_coe_nonZeroDivisors πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”dvd_cancel_right_mem_nonZeroDivisors
Subtype.prop
dvd_cancel_right_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
β€”mul_comm
dvd_cancel_left_mem_nonZeroDivisors
isLeftRegular_iff_mem_nonZeroDivisorsLeft πŸ“–mathematicalβ€”IsLeftRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsLeft
β€”isLeftRegular_iff_right_eq_zero_of_mul
isRegular_iff_isUnit_of_finite πŸ“–mathematicalβ€”IsRegular
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsUnit
β€”IsLeftRegular.isUnit_of_finite
IsRegular.left
IsUnit.isRegular
isRegular_iff_mem_nonZeroDivisors πŸ“–mathematicalβ€”IsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”isRegular_iff_eq_zero_of_mul
isRightRegular_iff_mem_nonZeroDivisorsRight πŸ“–mathematicalβ€”IsRightRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
β€”isRightRegular_iff_left_eq_zero_of_mul
isUnit_iff_mem_nonZeroDivisors_of_finite πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”isRegular_iff_mem_nonZeroDivisors
isRegular_iff_isUnit_of_finite
le_nonZeroDivisorsLeft_iff_isLeftRegular πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisorsLeft
Semiring.toMonoidWithZero
IsLeftRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
Submonoid.instSetLike
β€”instIsConcreteLE
le_nonZeroDivisorsRight_iff_isRightRegular πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisorsRight
Semiring.toMonoidWithZero
IsRightRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
Submonoid.instSetLike
β€”instIsConcreteLE
le_nonZeroDivisors_iff_isRegular πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Semiring.toMonoidWithZero
IsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
Submonoid.instSetLike
β€”β€”
mul_cancel_left_coe_nonZeroDivisors πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”mul_cancel_left_mem_nonZeroDivisors
Subtype.prop
mul_cancel_left_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”mul_cancel_left_mem_nonZeroDivisorsLeft
mul_cancel_left_mem_nonZeroDivisorsLeft πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsLeft
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”isLeftRegular_iff_mem_nonZeroDivisorsLeft
mul_cancel_right_coe_nonZeroDivisors πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”mul_cancel_right_mem_nonZeroDivisors
Subtype.prop
mul_cancel_right_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”mul_cancel_right_mem_nonZeroDivisorsRight
mul_cancel_right_mem_nonZeroDivisorsRight πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisorsRight
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”isRightRegular_iff_mem_nonZeroDivisorsRight

---

← Back to Index