Documentation Verification Report

Opposite

📁 Source: Mathlib/Algebra/Ring/Opposite.lean

Statistics

MetricCount
DefinitionsinstAddCommGroupWithOne, instAddCommMonoidWithOne, instCommRing, instCommSemiring, instDistrib, instIntCast, instNatCast, instNonAssocRing, instNonAssocSemiring, instNonUnitalCommRing, instNonUnitalCommSemiring, instNonUnitalNonAssocRing, instNonUnitalNonAssocSemiring, instNonUnitalRing, instNonUnitalSemiring, instRing, instSemiring, instAddCommGroupWithOne, instAddCommMonoidWithOne, instAddGroupWithOne, instAddMonoidWithOne, instCommRing, instCommSemiring, instDistrib, instIntCast, instNatCast, instNonAssocRing, instNonAssocSemiring, instNonUnitalCommRing, instNonUnitalCommSemiring, instNonUnitalNonAssocRing, instNonUnitalNonAssocSemiring, instNonUnitalRing, instNonUnitalSemiring, instRing, instSemiring, fromOpposite, op, toOpposite, unop, fromOpposite, op, toOpposite, unop
44
TheoremsinstIsDomain, op_intCast, op_natCast, op_ofNat, unop_intCast, unop_natCast, unop_ofNat, instIsDomain, op_intCast, op_natCast, op_ofNat, unop_intCast, unop_natCast, unop_ofNat, fromOpposite_apply, op_apply_apply, op_symm_apply_apply, toOpposite_apply, fromOpposite_apply, op_apply_apply, op_symm_apply_apply, toOpposite_apply
22
Total66

AddOpposite

Definitions

NameCategoryTheorems
instAddCommGroupWithOne 📖CompOp
instAddCommMonoidWithOne 📖CompOp
instCommRing 📖CompOp
instCommSemiring 📖CompOp
instDistrib 📖CompOp
instIntCast 📖CompOp
2 mathmath: unop_intCast, op_intCast
instNatCast 📖CompOp
2 mathmath: unop_natCast, op_natCast
instNonAssocRing 📖CompOp
instNonAssocSemiring 📖CompOp
instNonUnitalCommRing 📖CompOp
instNonUnitalCommSemiring 📖CompOp
instNonUnitalNonAssocRing 📖CompOp
1 mathmath: instIsTopologicalRingAddOpposite
instNonUnitalNonAssocSemiring 📖CompOp
1 mathmath: instIsTopologicalSemiringAddOpposite
instNonUnitalRing 📖CompOp
instNonUnitalSemiring 📖CompOp
instRing 📖CompOp
instSemiring 📖CompOp
2 mathmath: instIsOrderedRing, instIsDomain

Theorems

NameKindAssumesProvesValidatesDepends On
instIsDomain 📖mathematicalIsDomain
AddOpposite
instSemiring
Ring.toSemiring
NoZeroDivisors.to_isDomain
instNontrivial
IsDomain.toNontrivial
instNoZeroDivisors
IsDomain.to_noZeroDivisors
op_intCast 📖mathematicalop
AddOpposite
instIntCast
op_natCast 📖mathematicalop
AddOpposite
instNatCast
op_ofNat 📖mathematicalop
unop_intCast 📖mathematicalunop
AddOpposite
instIntCast
unop_natCast 📖mathematicalunop
AddOpposite
instNatCast
unop_ofNat 📖mathematicalunop

MulOpposite

Definitions

NameCategoryTheorems
instAddCommGroupWithOne 📖CompOp
instAddCommMonoidWithOne 📖CompOp
instAddGroupWithOne 📖CompOp
instAddMonoidWithOne 📖CompOp
1 mathmath: charP
instCommRing 📖CompOp
instCommSemiring 📖CompOp
instDistrib 📖CompOp
instIntCast 📖CompOp
2 mathmath: unop_intCast, op_intCast
instNatCast 📖CompOp
2 mathmath: op_natCast, unop_natCast
instNonAssocRing 📖CompOp
instNonAssocSemiring 📖CompOp
78 mathmath: Matrix.toLinearMapRight'_mul, Subsemiring.op_injective, LinearEquiv.domMulActCongrRight_symm_apply, DoubleCentralizer.nnnorm_def', CategoryTheory.Preadditive.homSelfLinearEquivEndMulOpposite_apply, Subsemiring.op_eq_bot, Subsemiring.op_eq_top, Subsemiring.op_sup, Subsemiring.op_le_op_iff, Subsemiring.le_op_iff, LinearEquiv.domMulActCongrRight_apply, RingHom.toOpposite_apply, DoubleCentralizer.norm_def', Matrix.toLinearEquivRight'OfInv_symm_apply, Subsemiring.op_sInf, Subsemiring.addEquivOp_apply_coe, Subring.mopRingEquivOp_apply_coe, Subalgebra.mopAlgEquivOp_symm_apply, Subsemiring.unop_le_unop_iff, Subsemiring.unop_closure, Subsemiring.unop_eq_top, AlgHom.toRingHom_toOpposite, Subsemiring.op_iSup, Subsemiring.opEquiv_apply, Subsemiring.op_closure, Subsemiring.unop_sup, Subsemiring.op_le_iff, Subsemiring.unop_sInf, Matrix.toLinearMapRight'_mul_apply, Subalgebra.linearEquivOp_apply_coe, Subsemiring.mem_op, Subring.mopRingEquivOp_symm_apply, Subsemiring.centerToMulOpposite_symm_apply_coe, Subsemiring.addEquivOp_symm_apply_coe, Subsemiring.centerToMulOpposite_apply_coe, Subsemiring.opEquiv_symm_apply, Subsemiring.unop_injective, LinearMap.toMatrixRight'_id, Subsemiring.mopRingEquivOp_apply_coe, Subsemiring.op_inf, RingHom.op_symm_apply_apply, AlgHom.toRingHom_fromOpposite, Subsemiring.unop_inf, Subsemiring.unop_top, Subalgebra.algEquivOpMop_apply, Subsemiring.op_sSup, Matrix.toLinearMapRight'_apply, Subring.ringEquivOpMop_symm_apply_coe, Subsemiring.ringEquivOpMop_symm_apply_coe, CategoryTheory.Preadditive.homSelfLinearEquivEndMulOpposite_symm_apply, AlgHom.toRingHom_unop, Matrix.toLinearEquivRight'OfInv_apply, AlgHom.toRingHom_op, Subsemiring.coe_op, Subsemiring.op_toSubmonoid, Subsemiring.unop_bot, TwoSidedIdeal.subtypeMop_apply, Subsemiring.ringEquivOpMop_apply, RingHom.fromOpposite_apply, Subsemiring.op_top, Subsemiring.unop_iInf, Subsemiring.unop_sSup, Subsemiring.unop_eq_bot, TwoSidedIdeal.subtypeMop_injective, RingHom.op_apply_apply, Matrix.toLinearMapRight'_one, Subsemiring.mopRingEquivOp_symm_apply, Subalgebra.mopAlgEquivOp_apply_coe, Subalgebra.algEquivOpMop_symm_apply_coe, Subring.ringEquivOpMop_apply, Subsemiring.unop_toSubmonoid, Subsemiring.unop_iSup, Subsemiring.mem_unop, Subsemiring.coe_unop, LinearMap.toMatrixRight'_comp, Subsemiring.op_iInf, DoubleCentralizer.toProdMulOppositeHom_apply, Subsemiring.op_bot
instNonUnitalCommRing 📖CompOp
instNonUnitalCommSemiring 📖CompOp
instNonUnitalNonAssocRing 📖CompOp
13 mathmath: TwoSidedIdeal.mem_op_iff, IsSimpleRing.instMulOpposite, TwoSidedIdeal.opOrderIso_symm_apply, associator_op, TwoSidedIdeal.opOrderIso_apply, instIsTopologicalRingMulOpposite, TwoSidedIdeal.op_ringCon, NonUnitalSubring.centerToMulOpposite_symm_apply_coe, TwoSidedIdeal.coe_unop, TwoSidedIdeal.coe_op, TwoSidedIdeal.mem_unop_iff, NonUnitalSubring.centerToMulOpposite_apply_coe, TwoSidedIdeal.unop_ringCon
instNonUnitalNonAssocSemiring 📖CompOp
9 mathmath: CStarMatrix.norm_def', NonUnitalSubsemiring.centerToMulOpposite_symm_apply_coe, CStarMatrix.toCLMNonUnitalAlgHom_eq_toCLM, NonUnitalRingHom.fromOpposite_apply, NonUnitalRingHom.op_symm_apply_apply, NonUnitalRingHom.toOpposite_apply, NonUnitalRingHom.op_apply_apply, NonUnitalSubsemiring.centerToMulOpposite_apply_coe, instIsTopologicalSemiringMulOpposite
instNonUnitalRing 📖CompOp
instNonUnitalSemiring 📖CompOp
1 mathmath: instStarOrderedRing
instRing 📖CompOp
88 mathmath: CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d, CategoryTheory.preadditiveCoyonedaObj_map, Subring.coe_unop, Subring.addEquivOp_apply_coe, Subring.coe_op, CategoryTheory.Mat.instFaithfulMat_SingleObjMulOppositeEquivalenceSingleObjInverse, isLinearTopology_iff_hasBasis_open_twoSidedIdeal, Subring.op_le_op_iff, Subring.le_op_iff, Subring.unop_injective, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.full, FormalMultilinearSeries.ofScalarsSum_op, Subring.op_sup, Subring.mopRingEquivOp_apply_coe, MvPowerSeries.substAlgHom_eq_aeval, Subring.op_injective, CategoryTheory.isSeparator_iff_faithful_preadditiveCoyonedaObj, Subring.unop_top, CategoryTheory.Mat.instEssSurjMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Subring.op_bot, MvPowerSeries.LinearTopology.instIsLinearTopologyMulOpposite, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_carrier, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.exists_d_comp_eq_d, CategoryTheory.Abelian.full_comp_preadditiveCoyonedaObj, Subring.op_sSup, Subring.centerToMulOpposite_symm_apply_coe, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesInjectiveObjects, Subring.op_top, Subring.mopRingEquivOp_symm_apply, NormedSpace.exp_op, Subring.op_iInf, Subalgebra.unop_toSubring, CategoryTheory.Projective.projective_iff_preservesEpimorphisms_preadditiveCoyonedaObj, Subring.op_sInf, Subring.unop_eq_top, Subring.unop_sInf, CategoryTheory.preservesFiniteColimits_preadditiveCoyonedaObj_of_projective, IsLinearTopology.instMulOpposite, Subring.mem_unop, Subring.mem_op, CategoryTheory.preservesHomology_preadditiveCoyonedaObj_of_projective, Subring.unop_le_unop_iff, Subring.centerToMulOpposite_apply_coe, Subring.unop_inf, Subring.op_eq_bot, Subring.op_le_iff, Subring.op_toSubsemiring, Subring.unop_eq_bot, Subring.unop_bot, Subalgebra.op_toSubring, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.kernel_ι_d_comp_d, Subring.ringEquivOpMop_symm_apply_coe, Subring.unop_closure, Subring.unop_toSubsemiring, Subring.unop_sup, CategoryTheory.Mat.instIsEquivalenceMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Subring.op_iSup, IsSemisimpleRing.instMulOpposite, IsCentralScalar.isLinearTopology_iff, CategoryTheory.Abelian.preadditiveCoyonedaObj_map_surjective, Subring.opEquiv_apply, CategoryTheory.IsGrothendieckAbelian.instIsLeftAdjointModuleCatMulOppositeEndTensorObj, CategoryTheory.Mat.instFullMat_SingleObjMulOppositeEquivalenceSingleObjInverse, Subring.op_closure, Subring.opEquiv_symm_apply, isSemisimpleRing_mulOpposite_iff, Subring.op_inf, Subring.unop_iInf, PowerSeries.substAlgHom_eq_aeval, Subring.unop_iSup, CategoryTheory.Mat.equivalenceSingleObjInverse_map, CategoryTheory.IsGrothendieckAbelian.GabrielPopescu.preservesFiniteLimits, CategoryTheory.preadditiveCoyonedaObj_obj_carrier, Subring.op_eq_top, CategoryTheory.preadditiveCoyonedaObj_obj_isModule, CategoryTheory.Mat.equivalenceSingleObjInverse_obj_str, CategoryTheory.preservesLimits_preadditiveCoyonedaObj, CategoryTheory.additive_coyonedaObj, Subring.unop_sSup, CategoryTheory.IsGrothendieckAbelian.GabrielPopescuAux.ι_d_assoc, isLinearTopology_iff_hasBasis_twoSidedIdeal, Subring.ringEquivOpMop_apply, CategoryTheory.preadditiveCoyoneda_obj, CategoryTheory.preadditiveCoyonedaObj_obj_isAddCommGroup, NormedSpace.exp_unop, CategoryTheory.IsGrothendieckAbelian.instIsRightAdjointModuleCatMulOppositeEndPreadditiveCoyonedaObj, Subring.addEquivOp_symm_apply_coe, FormalMultilinearSeries.ofScalarsSum_unop
instSemiring 📖CompOp
285 mathmath: CliffordAlgebra.unop_reverseOp, HasStrictFDerivAt.fun_mul', AlgEquiv.moduleEndSelfOp_apply_apply, Subalgebra.op_toSubsemiring, AlgEquiv.opOp_apply, hasStrictFDerivAt_list_prod_finRange', TrivSqZeroExt.lift_inlAlgHom_inrHom, instRankConditionMulOpposite, Matrix.toLinearMapRight'_mul, Subalgebra.mem_op, Polynomial.opRingEquiv_op_monomial, TrivSqZeroExt.isNilpotent_iff_isNilpotent_fst, AlgEquiv.toOpposite_apply, fderivWithin_fun_pow', Submodule.comap_op_mul, Subalgebra.op_sSup, TensorAlgebra.toTrivSqZeroExt_ι, LinearMap.ext_ring_op_iff, LinearEquiv.domMulActCongrRight_symm_apply, AlgEquiv.toOpposite_symm_apply, Submodule.comap_op_pow, CategoryTheory.Preadditive.homSelfLinearEquivEndMulOpposite_apply, TrivSqZeroExt.inv_inl, Subalgebra.op_sInf, Subalgebra.op_bot, AlgEquiv.op_apply_apply, TrivSqZeroExt.inv_one, instIsDomain, Submodule.LinearDisjoint.op, MonoidAlgebra.opRingEquiv_single, CliffordAlgebra.op_reverse, HasStrictFDerivAt.mul', ExteriorAlgebra.toTrivSqZeroExt_comp_map, Polynomial.leadingCoeff_opRingEquiv, TrivSqZeroExt.fstHom_comp_map, fderiv_fun_pow', AlgHom.mulLeftRightMatrix.inv_comp, TrivSqZeroExt.fst_exp, LinearEquiv.domMulActCongrRight_apply, TrivSqZeroExt.map_inr, Subalgebra.unop_sup, MonoidAlgebra.opRingEquiv_symm_apply, AlgHom.op_apply_apply, AlgEquiv.toAlgHom_op, AlgEquiv.toLinearEquiv_toOpposite, AddMonoidAlgebra.opRingEquiv_symm_single, Subalgebra.LinearDisjoint.linearIndependent_left_op_of_flat, AddMonoidAlgebra.opRingEquiv_symm_apply, Matrix.toLinearEquivRight'OfInv_symm_apply, DualNumber.inv_eps, HasStrictFDerivAt.list_prod', AlgHom.toLinearMap_toOpposite, NormMulClass.toNormSMulClass_op, TrivSqZeroExt.fst_invOf, algebraMap_apply, Submodule.map_unop_mul, rank_lt_rank_dual', Polynomial.opRingEquiv_op_C, Subalgebra.mopAlgEquivOp_symm_apply, Subalgebra.op_adjoin, AlgHom.opComm_symm_apply_apply, TrivSqZeroExt.map_comp_inlAlgHom, fderiv_mul_const', TrivSqZeroExt.eq_smul_exp_of_ne_zero, TrivSqZeroExt.invertibleEquivInvertibleFst_symm_apply_invOf, AlgEquiv.op_apply_symm_apply, Subalgebra.unop_top, TrivSqZeroExt.isNilpotent_inr, AlgEquiv.mopMatrix_apply, AlgHom.toRingHom_toOpposite, Subalgebra.op_inf, TrivSqZeroExt.mul_left_eq_one, Subalgebra.coe_op, TrivSqZeroExt.snd_exp, DualNumber.isNilpotent_iff_eps_dvd, TrivSqZeroExt.map_comp_inrHom, fderiv_pow', Algebra.TensorProduct.opAlgEquiv_apply, lift_rank_lt_rank_dual', AlgHom.opComm_apply_apply, RingEquiv.moduleEndSelfOp_apply, IsAzumaya.mulLeftRight_comp_congr, TrivSqZeroExt.inr_mul_inr, Subalgebra.unop_bot, fderivWithin_fun_mul', hasFDerivAt_list_prod', Matrix.toLinearMapRight'_mul_apply, AlgHom.mulLeftRight_apply, Subalgebra.linearEquivOp_apply_coe, IsAzumaya.bij, fderiv_mul', AlgEquiv.opComm_apply_apply, IsSemisimpleRing.exists_algEquiv_pi_matrix_end_mulOpposite, Submodule.map_unop_pow, instIsTorsionFreeMulOpposite, Polynomial.opRingEquiv_op_X, DualNumber.exists_mul_left_or_mul_right, invariantBasisNumber_iff, TrivSqZeroExt.invertibleEquivInvertibleFst_apply_invOf, MonoidAlgebra.opRingEquiv_symm_single, hasFDerivWithinAt_pow', TrivSqZeroExt.isNilpotent_inl_iff, TrivSqZeroExt.mul_inv_cancel, RingEquiv.moduleEndSelf_apply, TrivSqZeroExt.inv_mul_cancel, fderivWithin_mul_const', hasFDerivAt_list_prod_finRange', Submodule.equivOpposite_apply, TrivSqZeroExt.invOf_eq_inv, Subalgebra.unop_sSup, AlgEquiv.toRingEquiv_unop, TwoSidedIdeal.mem_asIdealOpposite, Subalgebra.unop_le_unop_iff, Submodule.map_op_pow, CliffordAlgebra.reverseOpEquiv_opComm, HasFDerivWithinAt.mul_const', IsTopologicalSemiring.toOppositeIsModuleTopology, fderiv_pow_ring', AlgEquiv.toRingEquiv_opOp, rank_dual_eq_card_dual_of_aleph0_le_rank', DoubleCentralizer.instIsCentralScalar, Subalgebra.unop_iInf, Matrix.instSMulCommClassMulOppositeForallOfIsScalarTower_1, TrivSqZeroExt.inv_inv, AlgEquiv.op_symm_apply_symm_apply, TrivSqZeroExt.exp_def, HasFDerivAt.fun_pow', Subalgebra.unop_inf, HasMFDerivWithinAt.mul', IsAzumaya.coe_tensorEquivEnd, AlgHom.fromOpposite_apply, ExteriorAlgebra.toTrivSqZeroExt_ι, TrivSqZeroExt.snd_invOf, QuaternionAlgebra.coe_starAe, LinearMap.toMatrixRight'_id, IsSimpleRing.exists_algEquiv_matrix_end_mulOpposite, instInvariantBasisNumberMulOpposite, Subalgebra.mem_unop, Subalgebra.op_top, Subalgebra.unop_adjoin, Algebra.TensorProduct.opAlgEquiv_symm_apply, hasStrictFDerivAt_pow', Subalgebra.op_iInf, LieSubmodule.Quotient.isCentralScalar, Polynomial.opRingEquiv_symm_C_mul_X_pow, fderiv_fun_mul', TrivSqZeroExt.liftEquivOfComm_apply, Subalgebra.op_le_iff, AlgHom.toRingHom_fromOpposite, Polynomial.opRingEquiv_symm_monomial, Submodule.linearDisjoint_op, CliffordAlgebra.toBaseChange_comp_reverseOp, TrivSqZeroExt.isUnit_inv_iff, Polynomial.support_opRingEquiv, TrivSqZeroExt.inv_neg, Submodule.map_op_mul, hasStrictFDerivAt_list_prod_attach', MeasureTheory.Lp.instIsCentralScalar, Matrix.scalar_comm_iff, TrivSqZeroExt.sndHom_comp_map, AddMonoidAlgebra.opRingEquiv_single, TrivSqZeroExt.map_comp_map, Subalgebra.algEquivOpMop_apply, AlgEquiv.opComm_apply_symm_apply, TrivSqZeroExt.algebraMap_eq_inl, AlgHom.toLinearMap_fromOpposite, AlgEquiv.toRingEquiv_op, AddMonoidAlgebra.opRingEquiv_apply, Matrix.toLinearMapRight'_apply, HasFDerivWithinAt.pow', HasFDerivAt.list_prod', hasFDerivAt_pow', DualNumber.commute_eps_left, Submodule.map_unop_one, TrivSqZeroExt.isUnit_inr_iff, Polynomial.coeff_opRingEquiv, instIsOrderedRing, AlgEquiv.toAlgHom_unop, AlgEquiv.moduleEndSelf_apply_apply, Quaternion.coe_starAe, CategoryTheory.Preadditive.homSelfLinearEquivEndMulOpposite_symm_apply, TrivSqZeroExt.isUnit_or_isNilpotent_of_isMaximal_isNilpotent, AlgHom.toRingHom_unop, Subalgebra.op_iSup, Algebra.IsCentral.instMulOpposite, Subalgebra.op_sup, TrivSqZeroExt.snd_map, AlgEquiv.moduleEndSelfOp_symm_apply, DualNumber.commute_eps_right, CliffordAlgebra.reverseOp_ι, Matrix.transposeAlgEquiv_apply, Matrix.toLinearEquivRight'OfInv_apply, TrivSqZeroExt.fst_map, HasFDerivAt.pow', HasStrictFDerivAt.pow', AlgHom.toRingHom_op, Subalgebra.unop_toSubsemiring, Subalgebra.coe_unop, TrivSqZeroExt.liftEquivOfComm_symm_apply_coe, HasStrictFDerivAt.mul_const', AlgEquiv.opComm_symm_apply_apply, AlgEquiv.moduleEndSelf_symm_apply, Submodule.comap_unop_pow, AlgEquiv.opComm_symm_apply_symm_apply, fderivWithin_list_prod', HasFDerivWithinAt.fun_mul', Matrix.instSMulCommClassMulOppositeForallOfIsScalarTower, TrivSqZeroExt.algebraMap_eq_inlHom, Subalgebra.opEquiv_symm_apply, fderivWithin_pow_ring', Algebra.TensorProduct.opAlgEquiv_tmul, AlgEquiv.mopMatrix_symm_apply, TwoSidedIdeal.subtypeMop_apply, Subalgebra.linearEquivOp_symm_apply_coe, AlgEquiv.toRingEquiv_toOpposite, HasFDerivWithinAt.fun_pow', Matrix.transposeAlgEquiv_symm_apply, Polynomial.opRingEquiv_symm_C, TrivSqZeroExt.map_inl, Matrix.instIsScalarTowerMulOppositeForallOfSMulCommClass, HasFDerivAt.mul_const', HasStrictFDerivAt.fun_pow', AlgEquiv.op_symm_apply_apply, DualNumber.lift_op_smul, TrivSqZeroExt.mul_right_eq_one, Submodule.equivOpposite_symm_apply, Polynomial.natDegree_opRingEquiv, Submodule.comap_unop_one, Submodule.mulMap_op, hasStrictFDerivAt_list_prod', TwoSidedIdeal.subtypeMop_injective, TrivSqZeroExt.inv_zero, Ring.uniformContinuousConstSMul_op, DualNumber.eps_mul_eps, ContinuousLinearMap.isCentralScalar, Polynomial.opRingEquiv_op_C_mul_X_pow, TrivSqZeroExt.isUnit_inl_iff, TrivSqZeroExt.isUnit_iff_isUnit_fst, Matrix.toLinearMapRight'_one, HasFDerivWithinAt.mul', Submodule.comap_op_one, AlgHom.toOpposite_apply, DualNumber.snd_mul, TrivSqZeroExt.isUnit_or_isNilpotent, Submodule.map_op_one, fderivWithin_mul', RestrictScalars.isCentralScalar, Subalgebra.le_op_iff, TrivSqZeroExt.mul_inv_rev, Matrix.scalar_commute_iff, Algebra.TensorProduct.opAlgEquiv_symm_tmul, Subalgebra.mopAlgEquivOp_apply_coe, fderiv_list_prod', HasMFDerivAt.mul', Subalgebra.LinearDisjoint.mulLeftMap_ker_eq_bot_iff_linearIndependent_op, Subalgebra.algEquivOpMop_symm_apply_coe, AlgHom.op_symm_apply_apply, AlgEquiv.opOp_symm_apply, CliffordAlgebra.reverseOpEquiv_apply, HasFDerivAt.fun_mul', LieSubalgebra.instIsCentralScalarSubtypeMem, MonoidAlgebra.opRingEquiv_apply, HasFDerivAt.mul', hasFDerivAt_list_prod_attach', rankCondition_iff, Subalgebra.op_le_op_iff, Matrix.op_smul_eq_vecMul, Polynomial.opRingEquiv_symm_X, LinearMap.toMatrixRight'_comp, TrivSqZeroExt.inv_inr, IsLinearTopology.hasBasis_right_ideal, Submodule.comap_unop_mul, TensorProduct.instIsCentralScalar, DualNumber.isNilpotent_eps, Subalgebra.opEquiv_apply, TrivSqZeroExt.eq_smul_exp_of_invertible, TrivSqZeroExt.map_id, AlgHom.mulLeftRightMatrix.comp_inv, RingEquiv.moduleEndSelfOp_symm_apply, IsAzumaya.AlgHom.mulLeftRight_bij, HasFDerivWithinAt.list_prod', Subalgebra.unop_iSup, Subalgebra.unop_sInf, TwoSidedIdeal.coe_mop_smul, fderivWithin_pow'

Theorems

NameKindAssumesProvesValidatesDepends On
instIsDomain 📖mathematicalIsDomain
MulOpposite
instSemiring
Ring.toSemiring
NoZeroDivisors.to_isDomain
instNontrivial
IsDomain.toNontrivial
instNoZeroDivisors
IsDomain.to_noZeroDivisors
op_intCast 📖mathematicalop
MulOpposite
instIntCast
op_natCast 📖mathematicalop
MulOpposite
instNatCast
op_ofNat 📖mathematicalop
unop_intCast 📖mathematicalunop
MulOpposite
instIntCast
unop_natCast 📖mathematicalunop
MulOpposite
instNatCast
unop_ofNat 📖mathematicalunop

NonUnitalRingHom

Definitions

NameCategoryTheorems
fromOpposite 📖CompOp
1 mathmath: fromOpposite_apply
op 📖CompOp
2 mathmath: op_symm_apply_apply, op_apply_apply
toOpposite 📖CompOp
1 mathmath: toOpposite_apply
unop 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
fromOpposite_apply 📖mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
NonUnitalRingHom
instFunLike
MulOpposite
MulOpposite.instNonUnitalNonAssocSemiring
fromOpposite
MulOpposite.unop
op_apply_apply 📖mathematicalDFunLike.coe
NonUnitalRingHom
MulOpposite
MulOpposite.instNonUnitalNonAssocSemiring
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
op
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
MulOpposite.instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddMonoidHom.toZeroHom
AddMonoidHom
AddMonoidHom.mulOp
toAddMonoidHom
op_symm_apply_apply 📖mathematicalDFunLike.coe
NonUnitalRingHom
instFunLike
Equiv
MulOpposite
MulOpposite.instNonUnitalNonAssocSemiring
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
op
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddMonoidHom.toZeroHom
AddMonoidHom
MulOpposite.instAddZeroClass
AddMonoidHom.mulUnop
toAddMonoidHom
toOpposite_apply 📖mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
NonUnitalRingHom
instFunLike
MulOpposite
MulOpposite.instNonUnitalNonAssocSemiring
toOpposite
MulOpposite.op

RingHom

Definitions

NameCategoryTheorems
fromOpposite 📖CompOp
2 mathmath: AlgHom.toRingHom_fromOpposite, fromOpposite_apply
op 📖CompOp
3 mathmath: op_symm_apply_apply, AlgHom.toRingHom_op, op_apply_apply
toOpposite 📖CompOp
2 mathmath: toOpposite_apply, AlgHom.toRingHom_toOpposite
unop 📖CompOp
1 mathmath: AlgHom.toRingHom_unop

Theorems

NameKindAssumesProvesValidatesDepends On
fromOpposite_apply 📖mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
instFunLike
MulOpposite
MulOpposite.instNonAssocSemiring
fromOpposite
MulOpposite.unop
op_apply_apply 📖mathematicalDFunLike.coe
RingHom
MulOpposite
MulOpposite.instNonAssocSemiring
instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
op
MulOpposite.op
MulOpposite.unop
op_symm_apply_apply 📖mathematicalDFunLike.coe
RingHom
instFunLike
Equiv
MulOpposite
MulOpposite.instNonAssocSemiring
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
op
MulOpposite.unop
MulOpposite.op
toOpposite_apply 📖mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
RingHom
instFunLike
MulOpposite
MulOpposite.instNonAssocSemiring
toOpposite
MulOpposite.op

---

← Back to Index