| Name | Category | Theorems |
instCommRing š | CompOp | 16 mathmath: AlgebraicGeometry.coprodSpec_apply, AlgebraicGeometry.coprodSpec_inr, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, AlgebraicGeometry.isIso_stalkMap_coprodSpec, Algebra.trace_prod, AlgebraicGeometry.coprodSpec_coprodMk, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, AlgebraicGeometry.coprodSpec_inr_assoc, AlgebraicGeometry.coprodSpec_inl_assoc, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, AlgebraicGeometry.coprodSpec_inl, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, Algebra.trace_prod_apply, AlgebraicGeometry.instIsIsoSchemeCoprodSpec, CommRingCat.prodFan_pt
|
instCommSemiring š | CompOp | 13 mathmath: AlgebraicGeometry.coprodSpec_apply, PrimeSpectrum.isClosedEmbedding_comap_snd, PrimeSpectrum.primeSpectrumProd_symm_inl, PrimeSpectrum.primeSpectrumProd_symm_inr_asIdeal, PrimeSpectrum.isClosedEmbedding_comap_fst, IsLocalization.away_snd, PrimeSpectrum.primeSpectrumProd_symm_inr, AlgebraicGeometry.coprodSpec_coprodMk, PrimeSpectrum.range_comap_snd, PrimeSpectrum.primeSpectrumProd_symm_inl_asIdeal, IsLocalization.away_fst, PrimeSpectrum.range_comap_fst, instPerfectRingProd
|
instDistrib š | CompOp | ā |
instNonAssocRing š | CompOp | ā |
instNonAssocSemiring š | CompOp | 70 mathmath: Subring.range_snd, NumberField.mixedEmbedding.convexBodyLT'_mem, RingHom.snd_comp_prod, Ideal.map_fst_prod, DoubleCentralizer.nnnorm_def', NumberField.mixedEmbedding.norm_eq_norm, NumberField.mixedEmbedding.mem_idealLattice, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, RingHom.prod_unique, RingEquiv.snd_comp_coe_prodComm, NumberField.mixedEmbedding.convexBodyLT_mem, Subsemiring.coe_prod, DoubleCentralizer.norm_def', Subsemiring.prod_top, NumberField.InfiniteAdeleRing.mixedEmbedding_eq_algebraMap_comp, Subsemiring.prod_mono_right, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, RingHom.prod_comp_prodMap, NumberField.mixedEmbedding.unit_smul_eq_iff_mul_eq, NumberField.mixedEmbedding.fundamentalCone.existsUnique_preimage_of_mem_integerSet, Subsemiring.top_prod_top, Ideal.fst_comp_quotientMulEquivQuotientProd, RingHom.coe_fst, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, NumberField.mixedEmbedding.logMap_eq_logEmbedding, IsLocalRing.exists_surjective_of_not_isLocalRing, RingHom.prodMap_def, RingHom.fst_comp_prod, Ideal.ideal_prod_eq, Ideal.map_snd_prod, Subsemiring.range_fst, NumberField.mixedEmbedding.mixedEmbedding_apply_isReal, RingHom.prod_bijective_of_isIdempotentElem, NumberField.mixedEmbedding.normAtAllPlaces_mixedEmbedding, PrimeSpectrum.range_comap_snd, Ideal.snd_comp_quotientMulEquivQuotientProd, NumberField.mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, Subsemiring.range_snd, NumberField.mixedEmbedding.unitSMul_smul, RingHom.coe_snd, NumberField.mixedEmbedding.normAtPlace_apply, NumberField.mixedEmbedding_injective, NumberField.mixedEmbedding.latticeBasis_apply, NumberField.mixedEmbedding.latticeBasis_repr_apply, Subsemiring.prod_mono_left, Subsemiring.prod_bot_sup_bot_prod, RingHom.prod_apply, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, Subring.range_fst, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_expMap_symm, Subsemiring.top_prod, NumberField.mixedEmbedding.fundamentalCone.mem_idealSet, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, NumberField.mixedEmbedding.mixedEmbedding_apply_isComplex, Ideal.fst_comp_quotientInfEquivQuotientProd, Ideal.map_prodComm_prod, NumberField.mixedEmbedding.fundamentalCone.mem_integerSet, PrimeSpectrum.range_comap_fst, Ideal.snd_comp_quotientInfEquivQuotientProd, RingHom.coe_prodMap, NumberField.mixedEmbedding.commMap_canonical_eq_mixed, RingEquiv.fst_comp_coe_prodComm, NumberField.mixedEmbedding.norm_unit, Subsemiring.mem_prod, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, NumberField.mixedEmbedding.convexBodySum_mem, LinearMap.prodMapRingHom_apply, NumberField.mixedEmbedding.mem_rat_span_latticeBasis, DoubleCentralizer.toProdMulOppositeHom_apply, Subsemiring.prod_mono
|
instNonUnitalCommRing š | CompOp | ā |
instNonUnitalCommSemiring š | CompOp | ā |
instNonUnitalNonAssocRing š | CompOp | 9 mathmath: NonUnitalSubring.prod_top, NonUnitalSubring.top_prod, NonUnitalSubring.prod_mono_left, NonUnitalSubring.top_prod_top, NonUnitalSubring.prod_mono, NonUnitalSubring.mem_prod, instIsTopologicalRingProd, NonUnitalSubring.prod_mono_right, NonUnitalSubring.coe_prod
|
instNonUnitalNonAssocSemiring š | CompOp | 65 mathmath: NonUnitalStarSubalgebra.prod_toNonUnitalSubalgebra, NonUnitalStarAlgHom.inl_apply, instIsTopologicalSemiringProd, NonUnitalRingHom.snd_comp_prod, NonUnitalAlgHom.fst_toFun, NonUnitalSubsemiring.top_prod, NonUnitalRingHom.fst_comp_prod, NonUnitalSubring.prod_top, NonUnitalStarAlgHom.prodEquiv_symm_apply, NonUnitalSubalgebra.prod_inf_prod, NonUnitalRingHom.coe_prodMap, NonUnitalSubalgebra.prod_top, NonUnitalAlgHom.prod_apply, NonUnitalSubsemiring.prod_mono, NonUnitalRingHom.coe_snd, NonUnitalStarAlgHom.prod_fst_snd, NonUnitalAlgHom.prod_fst_snd, NonUnitalAlgHom.prodEquiv_apply, NonUnitalRingHom.prod_comp_prodMap, NonUnitalAlgHom.prodEquiv_symm_apply, NonUnitalStarAlgHom.prod_apply, NonUnitalRingHom.prodMap_def, NonUnitalAlgHom.coe_inr, NonUnitalSubring.range_snd, NonUnitalStarAlgHom.inr_apply, NonUnitalAlgHom.coe_prod, NonUnitalSubring.top_prod, NonUnitalStarAlgHom.snd_apply, NonUnitalAlgHom.inl_apply, NonUnitalStarAlgHom.prodEquiv_apply, NonUnitalAlgHom.snd_prod, NonUnitalSubsemiring.prod_mono_left, NonUnitalStarSubalgebra.prod_mono, NonUnitalStarAlgHom.fst_apply, NonUnitalStarSubalgebra.prod_inf_prod, NonUnitalSubsemiring.range_fst, NonUnitalAlgHom.fst_prod, NonUnitalAlgHom.snd_apply, NonUnitalSubalgebra.coe_prod, NonUnitalAlgHom.coe_inl, NonUnitalSubsemiring.top_prod_top, NonUnitalAlgHom.prod_toFun, NonUnitalStarAlgHom.fst_prod, NonUnitalSubsemiring.coe_prod, NonUnitalStarAlgHom.coe_prod, NonUnitalStarSubalgebra.coe_prod, NonUnitalStarAlgHom.snd_prod, NonUnitalAlgHom.inr_apply, NonUnitalSubsemiring.prod_top, NonUnitalSubsemiring.prod_mono_right, NonUnitalStarAlgHom.coe_inr, NonUnitalSubsemiring.mem_prod, NonUnitalStarAlgHom.coe_inl, NonUnitalStarSubalgebra.prod_top, NonUnitalAlgHom.fst_apply, NonUnitalSubalgebra.prod_toSubmodule, NonUnitalSubsemiring.range_snd, NonUnitalStarSubalgebra.mem_prod, NonUnitalSubalgebra.mem_prod, NonUnitalRingHom.prod_unique, NonUnitalSubalgebra.prod_mono, NonUnitalSubring.range_fst, NonUnitalRingHom.coe_fst, NonUnitalAlgHom.snd_toFun, NonUnitalRingHom.prod_apply
|
instNonUnitalRing š | CompOp | 5 mathmath: CFC.sqrt_map_prod, cfcā_map_prod, CFC.nnrpow_eq_nnrpow_prod, quasispectrum_eq, CFC.nnrpow_map_prod
|
instNonUnitalSemiring š | CompOp | 4 mathmath: instStarOrderedRing, NonUnitalStarSubalgebra.prod_inf_prod, isQuasiregular_prod_iff, NonUnitalStarSubalgebra.prod_top
|
instRing š | CompOp | 29 mathmath: IsIntegral.pair, Subring.top_prod, cfc_map_prod, NonarchimedeanRing.instProd, Algebra.IsIntegral.prod, spectrum_eq, Int.card_box, Subring.mem_prod, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, Subring.prod_mono_left, Subring.top_prod_top, IsIntegral.pair_iff, CFC.rpow_map_prod, instIsSemisimpleRingProd, Subring.prod_bot_sup_bot_prod, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, Int.existsUnique_mem_box, Subring.prod_top, fst_exp, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, Int.mem_box, card_box_succ, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, Subring.coe_prod, snd_exp, Subring.prod_mono, CFC.rpow_eq_rpow_prod, Subring.prod_mono_right
|
instSemiring š | CompOp | 96 mathmath: Ideal.isPrime_ideal_prod_top, instIsOrderedRingProd, ContinuousAlgHom.coe_fst, Algebra.TensorProduct.prodRight_tmul_fst, Ideal.span_prod, Ideal.map_fst_prod, Unitization.splitMul_apply, Algebra.TensorProduct.prodRight_symm_tmul, StarAlgHom.prodEquiv_apply, AlgHom.snd_prod, AlgEquiv.prodQuotientOfIsIdempotentElem_apply, Ideal.ideal_prod_prime, StarAlgHom.snd_apply, StarAlgHom.coe_prod, Subalgebra.prod_mono, Subalgebra.prod_inf_prod, Unitization.nnnorm_def, AlgEquiv.prodCongr_apply, Ideal.prod_bot_bot, Ideal.isPrime_ideal_prod_top', Ideal.prod_mono_left, Polynomial.aeval_prod_apply, Polynomial.aeval_prod, AlgEquiv.sumArrowEquivProdArrow_symm_apply_inr, AlgHom.prodEquiv_symm_apply, Unitization.splitMul_injective_of_clm_mul_injective, Subalgebra.FG.prod, AlgHom.coe_prod, RingHom.instRingHomSurjectiveProdSnd, StarAlgHom.snd_prod, AlgHom.fst_apply, ContinuousAlgHom.coe_prod, isPrincipalIdealRing_prod_iff, Ideal.idealProdEquiv_symm_apply, DoubleCentralizer.algebraMap_toProd, Ideal.ideal_prod_eq, Ideal.map_snd_prod, Ideal.prod_mono_right, AlgHom.snd_apply, Algebra.adjoin_inl_union_inr_eq_prod, Ideal.prod_mono, Ideal.prod_eq_top_iff, StarAlgHom.prod_fst_snd, LinearMap.prodMapAlgHom_apply_apply, PrimeSpectrum.range_comap_snd, Unitization.norm_def, ContinuousAlgHom.coe_prodMap, IsLocalRing.not_isLocalRing_of_prod_of_nontrivial, algebraMap_apply, ContinuousAlgHom.coe_fst', Algebra.adjoin_prod_le, ContinuousAlgHom.prodEquiv_apply, Algebra.FiniteType.prod, AlgEquiv.prodUnique_apply, AlgEquiv.prodQuotientOfIsIdempotentElem_apply_snd, AlgHom.prod_fst_snd, StarAlgHom.prod_apply, instIsPrincipalIdealRingProd, RingHom.instRingHomSurjectiveProdFst, ContinuousAlgHom.coe_prodMap', AlgEquiv.prodQuotientOfIsIdempotentElem_apply_fst, Ideal.prod_eq_bot_iff, StarAlgHom.prodEquiv_symm_apply, Subalgebra.prod_top, AlgHom.prodEquiv_apply, Ideal.coe_prod, ContinuousAlgHom.fst_comp_prod, Ideal.prod_top_top, Unitization.norm_splitMul_snd_sq, Algebra.TensorProduct.prodRight_tmul, Algebra.TensorProduct.prodRight_tmul_snd, Unitization.splitMul_injective, ContinuousAlgHom.fst_prod_snd, AlgEquiv.uniqueProd_apply, AlgHom.fst_prod, StarAlgHom.fst_prod, ContinuousAlgHom.coe_snd', instIsNoetherianRingProd, Subalgebra.mem_prod, AlgEquiv.prodUnique_symm_apply, Ideal.map_prodComm_prod, AlgEquiv.uniqueProd_symm_apply, Ideal.span_prod_le, AlgEquiv.sumArrowEquivProdArrow_apply, PrimeSpectrum.range_comap_fst, Subalgebra.prod_toSubmodule, AlgHom.prod_comp, AlgEquiv.prodCongr_symm_apply, ContinuousAlgHom.prod_apply, AlgHom.prod_apply, StarAlgHom.fst_apply, ContinuousAlgHom.snd_comp_prod, ContinuousAlgHom.coe_snd, instIsArtinianRingProd, Ideal.mem_prod, Subalgebra.coe_prod
|