Documentation Verification Report

Prod

šŸ“ Source: Mathlib/Algebra/Ring/Prod.lean

Statistics

MetricCount
Definitionsfst, prod, prodMap, snd, instCommRing, instCommSemiring, instDistrib, instNonAssocRing, instNonAssocSemiring, instNonUnitalCommRing, instNonUnitalCommSemiring, instNonUnitalNonAssocRing, instNonUnitalNonAssocSemiring, instNonUnitalRing, instNonUnitalSemiring, instRing, instSemiring, prodComm, prodProdProdComm, prodZeroRing, zeroRingProd, fst, prod, prodMap, snd
25
Theoremscoe_fst, coe_prodMap, coe_snd, fst_comp_prod, prodMap_def, prod_apply, prod_comp_prodMap, prod_unique, snd_comp_prod, coe_prodComm, coe_prodComm_symm, fst_comp_coe_prodComm, prodProdProdComm_apply, prodProdProdComm_symm, prodProdProdComm_toAddEquiv, prodProdProdComm_toEquiv, prodProdProdComm_toMulEquiv, prodZeroRing_apply, prodZeroRing_symm_apply, snd_comp_coe_prodComm, zeroRingProd_apply, zeroRingProd_symm_apply, coe_fst, coe_prodMap, coe_snd, fst_comp_prod, instRingHomSurjectiveProdFst, instRingHomSurjectiveProdSnd, prodMap_def, prod_apply, prod_comp_prodMap, prod_unique, snd_comp_prod, false_of_nontrivial_of_product_domain
34
Total59

NonUnitalRingHom

Definitions

NameCategoryTheorems
fst šŸ“–CompOp
8 mathmath: fst_comp_prod, NonUnitalSubring.prod_top, prodMap_def, NonUnitalSubsemiring.range_fst, NonUnitalSubsemiring.prod_top, prod_unique, NonUnitalSubring.range_fst, coe_fst
prod šŸ“–CompOp
6 mathmath: snd_comp_prod, fst_comp_prod, prod_comp_prodMap, prodMap_def, prod_unique, prod_apply
prodMap šŸ“–CompOp
3 mathmath: coe_prodMap, prod_comp_prodMap, prodMap_def
snd šŸ“–CompOp
8 mathmath: snd_comp_prod, NonUnitalSubsemiring.top_prod, coe_snd, prodMap_def, NonUnitalSubring.range_snd, NonUnitalSubring.top_prod, NonUnitalSubsemiring.range_snd, prod_unique

Theorems

NameKindAssumesProvesValidatesDepends On
coe_fst šŸ“–mathematical—DFunLike.coe
NonUnitalRingHom
Prod.instNonUnitalNonAssocSemiring
instFunLike
fst
——
coe_prodMap šŸ“–mathematical—DFunLike.coe
NonUnitalRingHom
Prod.instNonUnitalNonAssocSemiring
instFunLike
prodMap
——
coe_snd šŸ“–mathematical—DFunLike.coe
NonUnitalRingHom
Prod.instNonUnitalNonAssocSemiring
instFunLike
snd
——
fst_comp_prod šŸ“–mathematical—comp
Prod.instNonUnitalNonAssocSemiring
fst
prod
—ext
prodMap_def šŸ“–mathematical—prodMap
prod
Prod.instNonUnitalNonAssocSemiring
comp
fst
snd
——
prod_apply šŸ“–mathematical—DFunLike.coe
NonUnitalRingHom
Prod.instNonUnitalNonAssocSemiring
instFunLike
prod
——
prod_comp_prodMap šŸ“–mathematical—comp
Prod.instNonUnitalNonAssocSemiring
prodMap
prod
——
prod_unique šŸ“–mathematical—prod
comp
Prod.instNonUnitalNonAssocSemiring
fst
snd
—ext
snd_comp_prod šŸ“–mathematical—comp
Prod.instNonUnitalNonAssocSemiring
snd
prod
—ext

Prod

Definitions

NameCategoryTheorems
instCommRing šŸ“–CompOp
16 mathmath: AlgebraicGeometry.coprodSpec_apply, AlgebraicGeometry.coprodSpec_inr, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, AlgebraicGeometry.isIso_stalkMap_coprodSpec, Algebra.trace_prod, AlgebraicGeometry.coprodSpec_coprodMk, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, AlgebraicGeometry.coprodSpec_inr_assoc, AlgebraicGeometry.coprodSpec_inl_assoc, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, AlgebraicGeometry.coprodSpec_inl, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, Algebra.trace_prod_apply, AlgebraicGeometry.instIsIsoSchemeCoprodSpec, CommRingCat.prodFan_pt
instCommSemiring šŸ“–CompOp
13 mathmath: AlgebraicGeometry.coprodSpec_apply, PrimeSpectrum.isClosedEmbedding_comap_snd, PrimeSpectrum.primeSpectrumProd_symm_inl, PrimeSpectrum.primeSpectrumProd_symm_inr_asIdeal, PrimeSpectrum.isClosedEmbedding_comap_fst, IsLocalization.away_snd, PrimeSpectrum.primeSpectrumProd_symm_inr, AlgebraicGeometry.coprodSpec_coprodMk, PrimeSpectrum.range_comap_snd, PrimeSpectrum.primeSpectrumProd_symm_inl_asIdeal, IsLocalization.away_fst, PrimeSpectrum.range_comap_fst, instPerfectRingProd
instDistrib šŸ“–CompOp—
instNonAssocRing šŸ“–CompOp—
instNonAssocSemiring šŸ“–CompOp
70 mathmath: Subring.range_snd, NumberField.mixedEmbedding.convexBodyLT'_mem, RingHom.snd_comp_prod, Ideal.map_fst_prod, DoubleCentralizer.nnnorm_def', NumberField.mixedEmbedding.norm_eq_norm, NumberField.mixedEmbedding.mem_idealLattice, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, RingHom.prod_unique, RingEquiv.snd_comp_coe_prodComm, NumberField.mixedEmbedding.convexBodyLT_mem, Subsemiring.coe_prod, DoubleCentralizer.norm_def', Subsemiring.prod_top, NumberField.InfiniteAdeleRing.mixedEmbedding_eq_algebraMap_comp, Subsemiring.prod_mono_right, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, RingHom.prod_comp_prodMap, NumberField.mixedEmbedding.unit_smul_eq_iff_mul_eq, NumberField.mixedEmbedding.fundamentalCone.existsUnique_preimage_of_mem_integerSet, Subsemiring.top_prod_top, Ideal.fst_comp_quotientMulEquivQuotientProd, RingHom.coe_fst, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, NumberField.mixedEmbedding.logMap_eq_logEmbedding, IsLocalRing.exists_surjective_of_not_isLocalRing, RingHom.prodMap_def, RingHom.fst_comp_prod, Ideal.ideal_prod_eq, Ideal.map_snd_prod, Subsemiring.range_fst, NumberField.mixedEmbedding.mixedEmbedding_apply_isReal, RingHom.prod_bijective_of_isIdempotentElem, NumberField.mixedEmbedding.normAtAllPlaces_mixedEmbedding, PrimeSpectrum.range_comap_snd, Ideal.snd_comp_quotientMulEquivQuotientProd, NumberField.mixedEmbedding.fundamentalCone.mixedEmbedding_preimageOfMemIntegerSet, Subsemiring.range_snd, NumberField.mixedEmbedding.unitSMul_smul, RingHom.coe_snd, NumberField.mixedEmbedding.normAtPlace_apply, NumberField.mixedEmbedding_injective, NumberField.mixedEmbedding.latticeBasis_apply, NumberField.mixedEmbedding.latticeBasis_repr_apply, Subsemiring.prod_mono_left, Subsemiring.prod_bot_sup_bot_prod, RingHom.prod_apply, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, Subring.range_fst, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_expMap_symm, Subsemiring.top_prod, NumberField.mixedEmbedding.fundamentalCone.mem_idealSet, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, NumberField.mixedEmbedding.mixedEmbedding_apply_isComplex, Ideal.fst_comp_quotientInfEquivQuotientProd, Ideal.map_prodComm_prod, NumberField.mixedEmbedding.fundamentalCone.mem_integerSet, PrimeSpectrum.range_comap_fst, Ideal.snd_comp_quotientInfEquivQuotientProd, RingHom.coe_prodMap, NumberField.mixedEmbedding.commMap_canonical_eq_mixed, RingEquiv.fst_comp_coe_prodComm, NumberField.mixedEmbedding.norm_unit, Subsemiring.mem_prod, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, NumberField.mixedEmbedding.convexBodySum_mem, LinearMap.prodMapRingHom_apply, NumberField.mixedEmbedding.mem_rat_span_latticeBasis, DoubleCentralizer.toProdMulOppositeHom_apply, Subsemiring.prod_mono
instNonUnitalCommRing šŸ“–CompOp—
instNonUnitalCommSemiring šŸ“–CompOp—
instNonUnitalNonAssocRing šŸ“–CompOp
9 mathmath: NonUnitalSubring.prod_top, NonUnitalSubring.top_prod, NonUnitalSubring.prod_mono_left, NonUnitalSubring.top_prod_top, NonUnitalSubring.prod_mono, NonUnitalSubring.mem_prod, instIsTopologicalRingProd, NonUnitalSubring.prod_mono_right, NonUnitalSubring.coe_prod
instNonUnitalNonAssocSemiring šŸ“–CompOp
65 mathmath: NonUnitalStarSubalgebra.prod_toNonUnitalSubalgebra, NonUnitalStarAlgHom.inl_apply, instIsTopologicalSemiringProd, NonUnitalRingHom.snd_comp_prod, NonUnitalAlgHom.fst_toFun, NonUnitalSubsemiring.top_prod, NonUnitalRingHom.fst_comp_prod, NonUnitalSubring.prod_top, NonUnitalStarAlgHom.prodEquiv_symm_apply, NonUnitalSubalgebra.prod_inf_prod, NonUnitalRingHom.coe_prodMap, NonUnitalSubalgebra.prod_top, NonUnitalAlgHom.prod_apply, NonUnitalSubsemiring.prod_mono, NonUnitalRingHom.coe_snd, NonUnitalStarAlgHom.prod_fst_snd, NonUnitalAlgHom.prod_fst_snd, NonUnitalAlgHom.prodEquiv_apply, NonUnitalRingHom.prod_comp_prodMap, NonUnitalAlgHom.prodEquiv_symm_apply, NonUnitalStarAlgHom.prod_apply, NonUnitalRingHom.prodMap_def, NonUnitalAlgHom.coe_inr, NonUnitalSubring.range_snd, NonUnitalStarAlgHom.inr_apply, NonUnitalAlgHom.coe_prod, NonUnitalSubring.top_prod, NonUnitalStarAlgHom.snd_apply, NonUnitalAlgHom.inl_apply, NonUnitalStarAlgHom.prodEquiv_apply, NonUnitalAlgHom.snd_prod, NonUnitalSubsemiring.prod_mono_left, NonUnitalStarSubalgebra.prod_mono, NonUnitalStarAlgHom.fst_apply, NonUnitalStarSubalgebra.prod_inf_prod, NonUnitalSubsemiring.range_fst, NonUnitalAlgHom.fst_prod, NonUnitalAlgHom.snd_apply, NonUnitalSubalgebra.coe_prod, NonUnitalAlgHom.coe_inl, NonUnitalSubsemiring.top_prod_top, NonUnitalAlgHom.prod_toFun, NonUnitalStarAlgHom.fst_prod, NonUnitalSubsemiring.coe_prod, NonUnitalStarAlgHom.coe_prod, NonUnitalStarSubalgebra.coe_prod, NonUnitalStarAlgHom.snd_prod, NonUnitalAlgHom.inr_apply, NonUnitalSubsemiring.prod_top, NonUnitalSubsemiring.prod_mono_right, NonUnitalStarAlgHom.coe_inr, NonUnitalSubsemiring.mem_prod, NonUnitalStarAlgHom.coe_inl, NonUnitalStarSubalgebra.prod_top, NonUnitalAlgHom.fst_apply, NonUnitalSubalgebra.prod_toSubmodule, NonUnitalSubsemiring.range_snd, NonUnitalStarSubalgebra.mem_prod, NonUnitalSubalgebra.mem_prod, NonUnitalRingHom.prod_unique, NonUnitalSubalgebra.prod_mono, NonUnitalSubring.range_fst, NonUnitalRingHom.coe_fst, NonUnitalAlgHom.snd_toFun, NonUnitalRingHom.prod_apply
instNonUnitalRing šŸ“–CompOp
5 mathmath: CFC.sqrt_map_prod, cfcā‚™_map_prod, CFC.nnrpow_eq_nnrpow_prod, quasispectrum_eq, CFC.nnrpow_map_prod
instNonUnitalSemiring šŸ“–CompOp
4 mathmath: instStarOrderedRing, NonUnitalStarSubalgebra.prod_inf_prod, isQuasiregular_prod_iff, NonUnitalStarSubalgebra.prod_top
instRing šŸ“–CompOp
29 mathmath: IsIntegral.pair, Subring.top_prod, cfc_map_prod, NonarchimedeanRing.instProd, Algebra.IsIntegral.prod, spectrum_eq, Int.card_box, Subring.mem_prod, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, Subring.prod_mono_left, Subring.top_prod_top, IsIntegral.pair_iff, CFC.rpow_map_prod, instIsSemisimpleRingProd, Subring.prod_bot_sup_bot_prod, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, Int.existsUnique_mem_box, Subring.prod_top, fst_exp, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, Int.mem_box, card_box_succ, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, Subring.coe_prod, snd_exp, Subring.prod_mono, CFC.rpow_eq_rpow_prod, Subring.prod_mono_right
instSemiring šŸ“–CompOp
96 mathmath: Ideal.isPrime_ideal_prod_top, instIsOrderedRingProd, ContinuousAlgHom.coe_fst, Algebra.TensorProduct.prodRight_tmul_fst, Ideal.span_prod, Ideal.map_fst_prod, Unitization.splitMul_apply, Algebra.TensorProduct.prodRight_symm_tmul, StarAlgHom.prodEquiv_apply, AlgHom.snd_prod, AlgEquiv.prodQuotientOfIsIdempotentElem_apply, Ideal.ideal_prod_prime, StarAlgHom.snd_apply, StarAlgHom.coe_prod, Subalgebra.prod_mono, Subalgebra.prod_inf_prod, Unitization.nnnorm_def, AlgEquiv.prodCongr_apply, Ideal.prod_bot_bot, Ideal.isPrime_ideal_prod_top', Ideal.prod_mono_left, Polynomial.aeval_prod_apply, Polynomial.aeval_prod, AlgEquiv.sumArrowEquivProdArrow_symm_apply_inr, AlgHom.prodEquiv_symm_apply, Unitization.splitMul_injective_of_clm_mul_injective, Subalgebra.FG.prod, AlgHom.coe_prod, RingHom.instRingHomSurjectiveProdSnd, StarAlgHom.snd_prod, AlgHom.fst_apply, ContinuousAlgHom.coe_prod, isPrincipalIdealRing_prod_iff, Ideal.idealProdEquiv_symm_apply, DoubleCentralizer.algebraMap_toProd, Ideal.ideal_prod_eq, Ideal.map_snd_prod, Ideal.prod_mono_right, AlgHom.snd_apply, Algebra.adjoin_inl_union_inr_eq_prod, Ideal.prod_mono, Ideal.prod_eq_top_iff, StarAlgHom.prod_fst_snd, LinearMap.prodMapAlgHom_apply_apply, PrimeSpectrum.range_comap_snd, Unitization.norm_def, ContinuousAlgHom.coe_prodMap, IsLocalRing.not_isLocalRing_of_prod_of_nontrivial, algebraMap_apply, ContinuousAlgHom.coe_fst', Algebra.adjoin_prod_le, ContinuousAlgHom.prodEquiv_apply, Algebra.FiniteType.prod, AlgEquiv.prodUnique_apply, AlgEquiv.prodQuotientOfIsIdempotentElem_apply_snd, AlgHom.prod_fst_snd, StarAlgHom.prod_apply, instIsPrincipalIdealRingProd, RingHom.instRingHomSurjectiveProdFst, ContinuousAlgHom.coe_prodMap', AlgEquiv.prodQuotientOfIsIdempotentElem_apply_fst, Ideal.prod_eq_bot_iff, StarAlgHom.prodEquiv_symm_apply, Subalgebra.prod_top, AlgHom.prodEquiv_apply, Ideal.coe_prod, ContinuousAlgHom.fst_comp_prod, Ideal.prod_top_top, Unitization.norm_splitMul_snd_sq, Algebra.TensorProduct.prodRight_tmul, Algebra.TensorProduct.prodRight_tmul_snd, Unitization.splitMul_injective, ContinuousAlgHom.fst_prod_snd, AlgEquiv.uniqueProd_apply, AlgHom.fst_prod, StarAlgHom.fst_prod, ContinuousAlgHom.coe_snd', instIsNoetherianRingProd, Subalgebra.mem_prod, AlgEquiv.prodUnique_symm_apply, Ideal.map_prodComm_prod, AlgEquiv.uniqueProd_symm_apply, Ideal.span_prod_le, AlgEquiv.sumArrowEquivProdArrow_apply, PrimeSpectrum.range_comap_fst, Subalgebra.prod_toSubmodule, AlgHom.prod_comp, AlgEquiv.prodCongr_symm_apply, ContinuousAlgHom.prod_apply, AlgHom.prod_apply, StarAlgHom.fst_apply, ContinuousAlgHom.snd_comp_prod, ContinuousAlgHom.coe_snd, instIsArtinianRingProd, Ideal.mem_prod, Subalgebra.coe_prod

RingEquiv

Definitions

NameCategoryTheorems
prodComm šŸ“–CompOp
5 mathmath: coe_prodComm_symm, snd_comp_coe_prodComm, coe_prodComm, Ideal.map_prodComm_prod, fst_comp_coe_prodComm
prodProdProdComm šŸ“–CompOp
5 mathmath: prodProdProdComm_apply, prodProdProdComm_toMulEquiv, prodProdProdComm_symm, prodProdProdComm_toEquiv, prodProdProdComm_toAddEquiv
prodZeroRing šŸ“–CompOp
2 mathmath: prodZeroRing_symm_apply, prodZeroRing_apply
zeroRingProd šŸ“–CompOp
2 mathmath: zeroRingProd_symm_apply, zeroRingProd_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_prodComm šŸ“–mathematical—DFunLike.coe
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
prodComm
——
coe_prodComm_symm šŸ“–mathematical—DFunLike.coe
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
prodComm
——
fst_comp_coe_prodComm šŸ“–mathematical—RingHom.comp
Prod.instNonAssocSemiring
RingHom.fst
RingHomClass.toRingHom
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
prodComm
RingHom.snd
—RingHom.ext
RingEquivClass.toRingHomClass
instRingEquivClass
prodProdProdComm_apply šŸ“–mathematical—DFunLike.coe
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
prodProdProdComm
——
prodProdProdComm_symm šŸ“–mathematical—symm
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
prodProdProdComm
——
prodProdProdComm_toAddEquiv šŸ“–mathematical—AddEquivClass.toAddEquiv
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
instEquivLike
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
RingEquivClass.toAddEquivClass
instRingEquivClass
prodProdProdComm
AddEquiv.prodProdProdComm
—RingEquivClass.toAddEquivClass
instRingEquivClass
prodProdProdComm_toEquiv šŸ“–mathematical—EquivLike.toEquiv
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
instEquivLike
prodProdProdComm
Equiv.prodProdProdComm
——
prodProdProdComm_toMulEquiv šŸ“–mathematical—MulEquivClass.toMulEquiv
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
instEquivLike
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
RingEquivClass.toMulEquivClass
instRingEquivClass
prodProdProdComm
MulEquiv.prodProdProdComm
—RingEquivClass.toMulEquivClass
instRingEquivClass
prodZeroRing_apply šŸ“–mathematical—DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instMul
Distrib.toAdd
Prod.instAdd
EquivLike.toFunLike
instEquivLike
prodZeroRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
——
prodZeroRing_symm_apply šŸ“–mathematical—DFunLike.coe
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
prodZeroRing
——
snd_comp_coe_prodComm šŸ“–mathematical—RingHom.comp
Prod.instNonAssocSemiring
RingHom.snd
RingHomClass.toRingHom
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
prodComm
RingHom.fst
—RingHom.ext
RingEquivClass.toRingHomClass
instRingEquivClass
zeroRingProd_apply šŸ“–mathematical—DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instMul
Distrib.toAdd
Prod.instAdd
EquivLike.toFunLike
instEquivLike
zeroRingProd
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
——
zeroRingProd_symm_apply šŸ“–mathematical—DFunLike.coe
RingEquiv
Prod.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Prod.instAdd
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
zeroRingProd
——

RingHom

Definitions

NameCategoryTheorems
fst šŸ“–CompOp
26 mathmath: PrimeSpectrum.primeSpectrumProd_symm_inl, Ideal.map_fst_prod, prod_unique, RingEquiv.snd_comp_coe_prodComm, Subsemiring.prod_top, PrimeSpectrum.isClosedEmbedding_comap_fst, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, Ideal.fst_comp_quotientMulEquivQuotientProd, coe_fst, prodMap_def, fst_comp_prod, Ideal.ideal_prod_eq, Subsemiring.range_fst, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, Subring.prod_top, AlgebraicGeometry.coprodSpec_inl_assoc, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, instRingHomSurjectiveProdFst, AlgebraicGeometry.coprodSpec_inl, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, Subring.range_fst, IsLocalization.away_fst, Ideal.fst_comp_quotientInfEquivQuotientProd, PrimeSpectrum.range_comap_fst, RingEquiv.fst_comp_coe_prodComm
prod šŸ“–CompOp
7 mathmath: snd_comp_prod, prod_unique, prod_comp_prodMap, prodMap_def, fst_comp_prod, prod_bijective_of_isIdempotentElem, prod_apply
prodMap šŸ“–CompOp
3 mathmath: prod_comp_prodMap, prodMap_def, coe_prodMap
snd šŸ“–CompOp
26 mathmath: Subring.range_snd, PrimeSpectrum.isClosedEmbedding_comap_snd, snd_comp_prod, AlgebraicGeometry.coprodSpec_inr, Subring.top_prod, prod_unique, RingEquiv.snd_comp_coe_prodComm, instRingHomSurjectiveProdSnd, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, IsLocalization.away_snd, PrimeSpectrum.primeSpectrumProd_symm_inr, prodMap_def, Ideal.ideal_prod_eq, Ideal.map_snd_prod, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, PrimeSpectrum.range_comap_snd, Ideal.snd_comp_quotientMulEquivQuotientProd, Subsemiring.range_snd, AlgebraicGeometry.coprodSpec_inr_assoc, coe_snd, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, Subsemiring.top_prod, Ideal.snd_comp_quotientInfEquivQuotientProd, RingEquiv.fst_comp_coe_prodComm

Theorems

NameKindAssumesProvesValidatesDepends On
coe_fst šŸ“–mathematical—DFunLike.coe
RingHom
Prod.instNonAssocSemiring
instFunLike
fst
——
coe_prodMap šŸ“–mathematical—DFunLike.coe
RingHom
Prod.instNonAssocSemiring
instFunLike
prodMap
——
coe_snd šŸ“–mathematical—DFunLike.coe
RingHom
Prod.instNonAssocSemiring
instFunLike
snd
——
fst_comp_prod šŸ“–mathematical—comp
Prod.instNonAssocSemiring
fst
prod
—ext
instRingHomSurjectiveProdFst šŸ“–mathematical—RingHomSurjective
Prod.instSemiring
fst
Semiring.toNonAssocSemiring
——
instRingHomSurjectiveProdSnd šŸ“–mathematical—RingHomSurjective
Prod.instSemiring
snd
Semiring.toNonAssocSemiring
——
prodMap_def šŸ“–mathematical—prodMap
prod
Prod.instNonAssocSemiring
comp
fst
snd
——
prod_apply šŸ“–mathematical—DFunLike.coe
RingHom
Prod.instNonAssocSemiring
instFunLike
prod
——
prod_comp_prodMap šŸ“–mathematical—comp
Prod.instNonAssocSemiring
prodMap
prod
——
prod_unique šŸ“–mathematical—prod
comp
Prod.instNonAssocSemiring
fst
snd
—ext
snd_comp_prod šŸ“–mathematical—comp
Prod.instNonAssocSemiring
snd
prod
—ext

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
false_of_nontrivial_of_product_domain šŸ“–ā€”ā€”ā€”ā€”NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
IsDomain.to_noZeroDivisors
mul_one
MulZeroClass.mul_zero
Prod.mk_eq_zero
zero_ne_one
NeZero.one

---

← Back to Index