Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Ring/Subring/Basic.lean

Statistics

MetricCount
DefinitionsofLeftInverse, restrict, subringCongr, subringMap, eqLocus, fintypeRange, range, rangeRestrict, center, centerCongr, centerToMulOpposite, centralizer, closure, closureCommRingOfComm, comap, decidableMemCenter, equivMapOfInjective, gi, inclusion, instBot, instCommRingSubtypeMemCenter, instCompleteLattice, instDistribMulActionSubtypeMem, instField, instFintypeSubtypeMemTop, instInfSet, instInhabited, instMin, instModuleSubtypeMem, instMulActionSubtypeMem, instMulActionWithZeroSubtypeMem, instMulDistribMulActionSubtypeMem, instMulSemiringActionSubtypeMem, instSMulSubtypeMem, instSMulWithZeroSubtypeMem, instTop, map, prod, prodEquiv, topEquiv
40
Theoremsint_mul_mem, ofLeftInverse_apply, ofLeftInverse_symm_apply, restrict_apply_coe, restrict_symm_apply_coe, closure_preimage_le, coe_range, coe_rangeRestrict, eqLocus_same, eqOn_set_closure, eq_of_eqOn_set_dense, eq_of_eqOn_set_top, map_closure, map_range, mem_eqLocus, mem_range, mem_range_self, rangeRestrict_surjective, range_eq_map, range_eq_top, range_eq_top_of_surjective, recOn, card_top, coe_div, coe_inv, smulCommClass_left, smulCommClass_right, centerCongr_apply_coe, centerCongr_symm_apply_coe, centerToMulOpposite_apply_coe, centerToMulOpposite_symm_apply_coe, center_eq_top, center_le_centralizer, center_toSubsemiring, centralizer_eq_top_iff_subset, centralizer_le, centralizer_toSubmonoid, centralizer_toSubsemiring, centralizer_univ, closure_empty, closure_eq, closure_eq_of_le, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_insert_intCast, closure_insert_natCast, closure_insert_one, closure_insert_zero, closure_le, closure_le_centralizer_centralizer, closure_mono, closure_preimage_le, closure_sUnion, closure_singleton_intCast, closure_singleton_natCast, closure_singleton_one, closure_singleton_zero, closure_union, closure_univ, coe_bot, coe_center, coe_centralizer, coe_comap, coe_equivMapOfInjective_apply, coe_iInf, coe_iSup_of_directed, coe_inclusion, coe_inf, coe_map, coe_prod, coe_sInf, coe_sSup_of_directedOn, coe_top, comap_comap, comap_equiv_eq_map_symm, comap_iInf, comap_inf, comap_map_eq, comap_map_eq_self, comap_map_eq_self_of_injective, comap_top, eq_top_iff', exists_list_of_mem_closure, gc_map_comap, instFaithfulSMulSubtypeMem, instIsScalarTowerSubtypeMem, instSMulCommClassSubtypeMemCenter, instSMulCommClassSubtypeMemCenter_1, list_prod_mem, list_sum_mem, map_bot, map_comap_eq, map_comap_eq_self, map_comap_eq_self_of_surjective, map_equiv_eq_comap_symm, map_iInf, map_iSup, map_id, map_inf, map_le_iff_le_comap, map_map, map_sup, mem_bot, mem_center_iff, mem_centralizer_iff, mem_closure, mem_closure_iff, mem_closure_image_of, mem_closure_of_mem, mem_comap, mem_iInf, mem_iSup_of_directed, mem_inf, mem_map, mem_map_equiv, mem_prod, mem_sInf, mem_sSup_of_directedOn, mem_top, multiset_prod_mem, multiset_sum_mem, notMem_of_notMem_closure, prod_bot_sup_bot_prod, prod_mem, prod_mono, prod_mono_left, prod_mono_right, prod_top, range_fst, range_snd, range_subtype, sInf_toAddSubgroup, sInf_toSubmonoid, smulCommClass_left, smulCommClass_right, smul_def, subset_closure, sum_mem, toAddSubgroup_eq_top, toAddSubgroup_le_toAddSubgroup, toAddSubgroup_lt_toAddSubgroup, toAddSubgroup_mono, toAddSubgroup_strictMono, toAddSubgroup_top, toSubmonoid_mono, toSubmonoid_strictMono, toSubsemiring_eq_top, toSubsemiring_le_toSubsemiring, toSubsemiring_lt_toSubsemiring, toSubsemiring_mono, toSubsemiring_strictMono, toSubsemiring_top, topEquiv_apply, topEquiv_symm_apply_coe, top_prod, top_prod_top
157
Total197

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
int_mul_mem πŸ“–mathematicalAddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddGroupWithOne.toIntCast
β€”zsmul_eq_mul
zsmul_mem

RingEquiv

Definitions

NameCategoryTheorems
ofLeftInverse πŸ“–CompOp
2 mathmath: ofLeftInverse_symm_apply, ofLeftInverse_apply
restrict πŸ“–CompOp
2 mathmath: restrict_symm_apply_coe, restrict_apply_coe
subringCongr πŸ“–CompOpβ€”
subringMap πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ofLeftInverse_apply πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Subring.toRing
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
ofLeftInverse
β€”β€”
ofLeftInverse_symm_apply πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
RingEquiv
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Subring.toRing
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
ofLeftInverse
β€”β€”
restrict_apply_coe πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
SubsemiringClass.toNonAssocSemiring
restrict
β€”β€”
restrict_symm_apply_coe πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
SubsemiringClass.toNonAssocSemiring
symm
restrict
β€”β€”

RingHom

Definitions

NameCategoryTheorems
eqLocus πŸ“–CompOp
7 mathmath: TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, eqLocus_same, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, mem_eqLocus
fintypeRange πŸ“–CompOpβ€”
range πŸ“–CompOp
72 mathmath: NumberField.canonicalEmbedding.mem_span_latticeBasis, IsPurelyInseparable.inseparable', IsPurelyInseparable.elemExponent_min', rangeRestrict_surjective, range_eq_top_of_surjective, Polynomial.Splits.mem_range_of_isRoot, IsPurelyInseparable.elemExponent_min, IsPurelyInseparable.elemExponent_def', IsPurelyInseparable.hasExponent_iff, Polynomial.Monic.eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one, RingEquiv.ofLeftInverse_symm_apply, RingCon.comapQuotientEquivRange_symm_mk, RingEquiv.ofLeftInverse_apply, IsPurelyInseparable.exists_pow_mem_range_tensorProduct, ker_rangeRestrict, mem_range, ValuationRing.range_algebraMap_eq, IsDedekindDomain.HeightOneSpectrum.mem_integers_of_valuation_le_one, mem_range_self, mem_perfectClosure_iff_pow_mem, Algebra.SubmersivePresentation.HasCoeffs.coeffs_subset_range, RingCon.comapQuotientEquivRange_mk, minpoly.two_le_natDegree_iff, IsPurelyInseparable.HasExponent.has_exponent, map_range, isPurelyInseparable_iff_pow_mem, isNoetherianRing_range, mem_perfectClosure_iff, IsPurelyInseparable.exponent_def', mem_range_of_deriv_eq_zero, FractionalIdeal.mem_dual, minpoly.mem_range_of_degree_eq_one, RingCon.coe_comapQuotientEquivRange_mk, RingCon.kerLift_range_eq, IntermediateField.isPurelyInseparable_adjoin_iff_pow_mem, Polynomial.filter_roots_map_range_eq_map_roots, Subring.map_comap_eq, IsFractionRing.ringHom_fieldRange_eq_of_comp_eq, RingCon.range_mk', isPurelyInseparable_iff, Polynomial.mem_map_range, minpoly.degree_eq_one_iff, IsPurelyInseparable.pow_mem, NumberField.mem_span_integralBasis, isArtinianRing_range, range_eq_map, Algebra.FormallyUnramified.range_eq_top_of_isPurelyInseparable, minpoly.natSepDegree_eq_one_iff_pow_mem, Submodule.mem_traceDual, range_eq_top, IsPurelyInseparable.exponent_min, AlgebraicGeometry.Proj.valuativeCriterion_existence_aux, Polynomial.Monic.eq_X_pow_char_pow_sub_C_of_natSepDegree_eq_one_of_irreducible, IsPurelyInseparable.hasExponent_iff', RingCon.range_lift, IsIntegral.mem_range_algebraMap_of_minpoly_splits, minpoly.natDegree_eq_one_iff, IsPurelyInseparable.exponent_min', bijective_rangeRestrict_comp_of_valuationRing, IsFractionRing.lift_fieldRange, Subring.range_subtype, RootPairing.toLinearMap_apply_apply_mem_range_algebraMap, AlgebraicGeometry.exists_lift_of_germInjective_aux, IsPurelyInseparable.exponent_def, IsPurelyInseparable.exists_pow_pow_mem_range_tensorProduct_of_expChar, Subalgebra.range_algebraMap, Differential.ContainConstants.mem_range_of_deriv_eq_zero, IsPurelyInseparable.inseparable, coe_range, coe_rangeRestrict, IsPurelyInseparable.elemExponent_def, IntermediateField.isPurelyInseparable_adjoin_simple_iff_pow_mem
rangeRestrict πŸ“–CompOp
4 mathmath: rangeRestrict_surjective, ker_rangeRestrict, bijective_rangeRestrict_comp_of_valuationRing, coe_rangeRestrict

Theorems

NameKindAssumesProvesValidatesDepends On
closure_preimage_le πŸ“–mathematicalβ€”Subring
Preorder.toLE
PartialOrder.toPreorder
Subring.instPartialOrder
Subring.closure
Set.preimage
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
Subring.comap
β€”Subring.closure_le
SetLike.mem_coe
Subring.mem_comap
Subring.subset_closure
coe_range πŸ“–mathematicalβ€”SetLike.coe
Subring
Subring.instSetLike
range
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
β€”β€”
coe_rangeRestrict πŸ“–mathematicalβ€”Subring
SetLike.instMembership
Subring.instSetLike
range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
Subring.toRing
instFunLike
rangeRestrict
β€”β€”
eqLocus_same πŸ“–mathematicalβ€”eqLocus
Top.top
Subring
Subring.instTop
β€”SetLike.ext
eqOn_set_closure πŸ“–mathematicalSet.EqOn
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
SetLike.coe
Subring
Subring.instSetLike
Subring.closure
β€”Subring.closure_le
eq_of_eqOn_set_dense πŸ“–β€”Subring.closure
Top.top
Subring
Subring.instTop
Set.EqOn
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
β€”β€”eq_of_eqOn_set_top
eqOn_set_closure
eq_of_eqOn_set_top πŸ“–β€”Set.EqOn
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
SetLike.coe
Subring
Subring.instSetLike
Top.top
Subring.instTop
β€”β€”ext
map_closure πŸ“–mathematicalβ€”Subring.map
Subring.closure
Set.image
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
β€”GaloisConnection.l_comm_of_u_comm
Set.image_preimage
Subring.gc_map_comap
GaloisInsertion.gc
map_range πŸ“–mathematicalβ€”Subring.map
range
comp
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”range_eq_map
Subring.map_map
mem_eqLocus πŸ“–mathematicalβ€”Subring
SetLike.instMembership
Subring.instSetLike
eqLocus
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
β€”β€”
mem_range πŸ“–mathematicalβ€”Subring
SetLike.instMembership
Subring.instSetLike
range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
β€”β€”
mem_range_self πŸ“–mathematicalβ€”Subring
SetLike.instMembership
Subring.instSetLike
range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
β€”mem_range
rangeRestrict_surjective πŸ“–mathematicalβ€”Subring
SetLike.instMembership
Subring.instSetLike
range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
Subring.toRing
instFunLike
rangeRestrict
β€”mem_range
range_eq_map πŸ“–mathematicalβ€”range
Subring.map
Top.top
Subring
Subring.instTop
β€”Subring.ext
range_eq_top πŸ“–mathematicalβ€”range
Top.top
Subring
Subring.instTop
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
β€”SetLike.ext'_iff
coe_range
Subring.coe_top
Set.range_eq_univ
range_eq_top_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
instFunLike
range
Top.top
Subring
Subring.instTop
β€”range_eq_top

Subring

Definitions

NameCategoryTheorems
center πŸ“–CompOp
28 mathmath: mem_center_iff, center.smulCommClass_right, instSMulCommClassSubtypeMemCenter, centralizer_eq_top_iff_subset, center.coe_div, center.coe_inv, centerCongr_apply_coe, ExpChar.expChar_center_iff, center_eq_top, CharP.charP_center_iff, centerToMulOpposite_symm_apply_coe, centralizer_univ, center_toSubsemiring, centerToMulOpposite_apply_coe, IsSimpleRing.isField_center, centerCongr_symm_apply_coe, center.smulCommClass_left, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent, instCharPLinearMapSubtypeMemSubringCenterId, instSMulCommClassSubtypeMemCenter_1, instExpCharLinearMapSubtypeMemSubringCenterId, coe_center, Subalgebra.center_toSubring, LinearMap.commute_transvections_iff_of_basis, Matrix.subringCenter_eq_scalar_map, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent_of_basis, JacobsonNoether.exists_separable_and_not_isCentral, center_le_centralizer
centerCongr πŸ“–CompOp
2 mathmath: centerCongr_apply_coe, centerCongr_symm_apply_coe
centerToMulOpposite πŸ“–CompOp
2 mathmath: centerToMulOpposite_symm_apply_coe, centerToMulOpposite_apply_coe
centralizer πŸ“–CompOp
9 mathmath: centralizer_toSubsemiring, centralizer_eq_top_iff_subset, closure_le_centralizer_centralizer, centralizer_le, centralizer_univ, mem_centralizer_iff, coe_centralizer, center_le_centralizer, centralizer_toSubmonoid
closure πŸ“–CompOp
51 mathmath: CommRingCat.closure_range_union_range_eq_top_of_isPushout, Polynomial.monic_restriction, closure_singleton_intCast, closure_singleton_one, Polynomial.evalβ‚‚_restriction, Algebra.mem_adjoin_iff, Polynomial.restriction_one, closure_singleton_natCast, Polynomial.degree_restriction, closure_mono, Subfield.mem_closure_iff, mem_closure, iInf_valuationSubring_superset, comap_map_eq, closure_union, closure_eq, closure_le_centralizer_centralizer, Polynomial.restriction_zero, closure_insert_natCast, is_noetherian_subring_closure, Algebra.adjoin_eq_ring_closure, mem_closure_iff, RingHom.eqOn_set_closure, subset_closure, smul_closure, Subfield.subring_closure_le, closure_insert_zero, closure_preimage_le, Polynomial.map_restriction, closure_empty, Polynomial.mem_closure_X_union_C, isIntegral_iff_isIntegral_closure_finite, unop_closure, Polynomial.coeff_restriction, NonUnitalSubring.unitization_range, closure_singleton_zero, mem_closure_of_mem, closure_insert_one, Polynomial.natDegree_restriction, op_closure, closure_univ, Polynomial.coeff_restriction', Polynomial.support_restriction, closure_le, Algebra.adjoin_int, closure_insert_intCast, RingHom.closure_preimage_le, RingHom.map_closure, closure_sUnion, closure_iUnion, Algebra.TensorProduct.closure_range_union_range_eq_top
closureCommRingOfComm πŸ“–CompOpβ€”
comap πŸ“–CompOp
20 mathmath: coe_comap, top_prod, comap_map_eq_self, comap_iInf, comap_map_eq, comap_equiv_eq_map_symm, comap_map_eq_self_of_injective, closure_preimage_le, map_comap_eq, gc_map_comap, prod_top, map_equiv_eq_comap_symm, comap_top, map_comap_eq_self_of_surjective, mem_comap, map_le_iff_le_comap, map_comap_eq_self, comap_inf, comap_comap, RingHom.closure_preimage_le
decidableMemCenter πŸ“–CompOpβ€”
equivMapOfInjective πŸ“–CompOp
1 mathmath: coe_equivMapOfInjective_apply
gi πŸ“–CompOpβ€”
inclusion πŸ“–CompOp
3 mathmath: coe_inclusion, LocalSubring.map_maximalIdeal_eq_top_of_isMax, LocalSubring.le_def
instBot πŸ“–CompOp
14 mathmath: closure_singleton_intCast, closure_singleton_one, closure_singleton_natCast, op_bot, mem_bot, smul_bot, map_bot, prod_bot_sup_bot_prod, op_eq_bot, closure_empty, unop_eq_bot, unop_bot, closure_singleton_zero, coe_bot
instCommRingSubtypeMemCenter πŸ“–CompOp
10 mathmath: centerCongr_apply_coe, centerToMulOpposite_symm_apply_coe, JacobsonNoether.exist_pow_eq_zero_of_le, centerToMulOpposite_apply_coe, IsSimpleRing.isField_center, centerCongr_symm_apply_coe, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent, LinearMap.commute_transvections_iff_of_basis, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent_of_basis, JacobsonNoether.exists_separable_and_not_isCentral
instCompleteLattice πŸ“–CompOp
18 mathmath: coe_sSup_of_directedOn, map_iSup, mem_sSup_of_directedOn, coe_iSup_of_directed, op_sup, comap_map_eq, closure_union, op_sSup, prod_bot_sup_bot_prod, mem_iSup_of_directed, unop_sup, op_iSup, smul_sup, unop_iSup, unop_sSup, map_sup, closure_sUnion, closure_iUnion
instDistribMulActionSubtypeMem πŸ“–CompOp
3 mathmath: LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent, LinearMap.commute_transvections_iff_of_basis, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent_of_basis
instField πŸ“–CompOp
4 mathmath: center.coe_div, center.coe_inv, instCharPLinearMapSubtypeMemSubringCenterId, instExpCharLinearMapSubtypeMemSubringCenterId
instFintypeSubtypeMemTop πŸ“–CompOp
1 mathmath: card_top
instInfSet πŸ“–CompOp
17 mathmath: comap_iInf, iInf_valuationSubring_superset, LocalSubring.eq_iInf_of_isIntegrallyClosedIn, op_iInf, op_sInf, unop_sInf, Subfield.sInf_toSubring, sInf_toAddSubgroup, sInf_toSubmonoid, mem_iInf, unop_iInf, mem_sInf, eq_iInf_of_isIntegrallyClosedIn, Set.integer_eq, map_iInf, coe_sInf, coe_iInf
instInhabited πŸ“–CompOpβ€”
instMin πŸ“–CompOp
7 mathmath: map_inf, mem_inf, coe_inf, unop_inf, map_comap_eq, op_inf, comap_inf
instModuleSubtypeMem πŸ“–CompOp
8 mathmath: Valuation.mem_leSubmodule_iff, Valuation.leSubmodule_monotone, Valuation.ltSubmodule_monotone, Valuation.ltSubmodule_le_leSubmodule, instCharPLinearMapSubtypeMemSubringCenterId, Valuation.mem_ltSubmodule_iff, instExpCharLinearMapSubtypeMemSubringCenterId, Valuation.leSubmodule_zero
instMulActionSubtypeMem πŸ“–CompOpβ€”
instMulActionWithZeroSubtypeMem πŸ“–CompOpβ€”
instMulDistribMulActionSubtypeMem πŸ“–CompOpβ€”
instMulSemiringActionSubtypeMem πŸ“–CompOpβ€”
instSMulSubtypeMem πŸ“–CompOp
13 mathmath: center.smulCommClass_right, instSMulCommClassSubtypeMemCenter, instFaithfulSMulSubtypeMem, smulCommClass_right, continuousSMul, center.smulCommClass_left, smul_def, LocalSubring.instIsScalarTowerSubtypeMemSubringToSubringOfPrime, minpoly.instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure, instSMulCommClassSubtypeMemCenter_1, instIsScalarTowerSubtypeMem, smulCommClass_left, Valuation.HasExtension.instIsScalarTowerInteger
instSMulWithZeroSubtypeMem πŸ“–CompOpβ€”
instTop πŸ“–CompOp
36 mathmath: LocalSubring.range_toSubring, CommRingCat.closure_range_union_range_eq_top_of_isPushout, RingHom.range_eq_top_of_surjective, centralizer_eq_top_iff_subset, Algebra.toSubring_eq_top, top_prod, isLocalRing_top, ValuationSubring.toSubring_top, center_eq_top, eq_top_iff', card_top, unop_top, toSubsemiring_top, topEquiv_apply, op_top, mem_top, top_prod_top, Algebra.top_toSubring, unop_eq_top, topEquiv_symm_apply_coe, IsDiscreteValuationRing.map_algebraMap_eq_valuationSubring, coe_top, prod_top, comap_top, LaurentSeries.powerSeriesEquivSubring_apply, RingCon.range_mk', RingHom.eqLocus_same, RingHom.range_eq_map, Algebra.FormallyUnramified.range_eq_top_of_isPurelyInseparable, RingHom.range_eq_top, toAddSubgroup_eq_top, closure_univ, op_eq_top, toSubsemiring_eq_top, toAddSubgroup_top, Algebra.TensorProduct.closure_range_union_range_eq_top
map πŸ“–CompOp
32 mathmath: map_iSup, LocalSubring.range_toSubring, map_inf, pointwise_smul_def, comap_map_eq_self, comap_map_eq, comap_equiv_eq_map_symm, RingHom.map_range, map_id, mem_map, map_map, LocalSubring.map_toSubring, coe_map, mem_map_equiv, map_bot, comap_map_eq_self_of_injective, map_comap_eq, IsDiscreteValuationRing.map_algebraMap_eq_valuationSubring, gc_map_comap, LaurentSeries.powerSeries_ext_subring, map_equiv_eq_comap_symm, map_comap_eq_self_of_surjective, LaurentSeries.powerSeriesEquivSubring_apply, RingHom.range_eq_map, instIsLocalRingSubtypeMemSubringMapOfNontrivial, map_le_iff_le_comap, map_comap_eq_self, coe_equivMapOfInjective_apply, map_iInf, Matrix.subringCenter_eq_scalar_map, map_sup, RingHom.map_closure
prod πŸ“–CompOp
9 mathmath: top_prod, mem_prod, prod_mono_left, top_prod_top, prod_bot_sup_bot_prod, prod_top, coe_prod, prod_mono, prod_mono_right
prodEquiv πŸ“–CompOpβ€”
topEquiv πŸ“–CompOp
2 mathmath: topEquiv_apply, topEquiv_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
card_top πŸ“–mathematicalβ€”Fintype.card
Subring
SetLike.instMembership
instSetLike
Top.top
instTop
instFintypeSubtypeMemTop
β€”Fintype.card_congr
centerCongr_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
Subring
instSetLike
center
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingSubtypeMemCenter
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
centerCongr
β€”β€”
centerCongr_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
Subring
instSetLike
center
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingSubtypeMemCenter
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
centerCongr
MulEquiv
MulEquiv.instEquivLike
MulEquiv.symm
MulEquivClass.toMulEquiv
β€”β€”
centerToMulOpposite_apply_coe πŸ“–mathematicalβ€”MulOpposite
Subsemigroup
MulOpposite.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
Subring
instSetLike
center
MulOpposite.instRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingSubtypeMemCenter
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
centerToMulOpposite
MulOpposite.op
β€”β€”
centerToMulOpposite_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
MulOpposite
Subring
MulOpposite.instRing
instSetLike
center
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRingSubtypeMemCenter
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
centerToMulOpposite
MulOpposite.unop
MulOpposite.instMul
β€”β€”
center_eq_top πŸ“–mathematicalβ€”center
CommRing.toRing
Top.top
Subring
instTop
β€”SetLike.coe_injective
Set.center_eq_univ
center_le_centralizer πŸ“–mathematicalβ€”Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
center
centralizer
β€”Set.center_subset_centralizer
center_toSubsemiring πŸ“–mathematicalβ€”toSubsemiring
center
Subsemiring.center
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”β€”
centralizer_eq_top_iff_subset πŸ“–mathematicalβ€”centralizer
Top.top
Subring
instTop
Set
Set.instHasSubset
SetLike.coe
instSetLike
center
β€”SetLike.ext'_iff
Set.centralizer_eq_top_iff_subset
centralizer_le πŸ“–mathematicalSet
Set.instHasSubset
Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
β€”Set.centralizer_subset
centralizer_toSubmonoid πŸ“–mathematicalβ€”Subsemiring.toSubmonoid
Semiring.toNonAssocSemiring
Ring.toSemiring
toSubsemiring
centralizer
Submonoid.centralizer
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”β€”
centralizer_toSubsemiring πŸ“–mathematicalβ€”toSubsemiring
centralizer
Subsemiring.centralizer
Ring.toSemiring
β€”β€”
centralizer_univ πŸ“–mathematicalβ€”centralizer
Set.univ
center
β€”SetLike.ext'
Set.centralizer_univ
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
Subring
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
Subring
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
Subring
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
Subring
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ZeroMemClass.zero_mem
Subring
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Ring.toSemiring
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
closure
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
NegMemClass.neg_mem
SubringClass.toNegMemClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegMemClass.neg_mem
SubringClass.toNegMemClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ZeroMemClass.zero_mem
Subring
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Ring.toSemiring
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
closure
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
NegMemClass.neg_mem
SubringClass.toNegMemClass
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
NegMemClass.neg_mem
SubringClass.toNegMemClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
closure_induction
closure_insert_intCast πŸ“–mathematicalβ€”closure
Set
Set.instInsert
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”Set.insert_eq
closure_union
closure_singleton_intCast
sup_of_le_right
closure_insert_natCast πŸ“–mathematicalβ€”closure
Set
Set.instInsert
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Int.cast_natCast
closure_insert_intCast
closure_insert_one πŸ“–mathematicalβ€”closure
Set
Set.instInsert
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Nat.cast_one
closure_insert_natCast
closure_insert_zero πŸ“–mathematicalβ€”closure
Set
Set.instInsert
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Nat.cast_zero
closure_insert_natCast
closure_le πŸ“–mathematicalβ€”Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_le_centralizer_centralizer πŸ“–mathematicalβ€”Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
centralizer
SetLike.coe
instSetLike
β€”closure_le
Set.subset_centralizer_centralizer
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”closure_le
Set.Subset.trans
subset_closure
closure_preimage_le πŸ“–mathematicalβ€”Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set.preimage
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
comap
β€”closure_le
SetLike.mem_coe
mem_comap
subset_closure
closure_sUnion πŸ“–mathematicalβ€”closure
Set.sUnion
iSup
Subring
Set
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.instMembership
β€”GaloisConnection.l_sSup
GaloisInsertion.gc
closure_singleton_intCast πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
Bot.bot
Subring
instBot
β€”bot_unique
closure_le
Set.singleton_subset_iff
intCast_mem
instSubringClass
closure_singleton_natCast πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Bot.bot
Subring
instBot
β€”Int.cast_natCast
closure_singleton_intCast
closure_singleton_one πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Bot.bot
Subring
instBot
β€”Nat.cast_one
closure_singleton_natCast
closure_singleton_zero πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Bot.bot
Subring
instBot
β€”Nat.cast_zero
closure_singleton_natCast
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
Subring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
Subring
instTop
β€”closure_eq
coe_top
coe_bot πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
Bot.bot
instBot
Set.range
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”RingHom.coe_range
coe_center πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
center
Set.center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
coe_centralizer πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
centralizer
Set.centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
coe_comap πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
comap
Set.preimage
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
β€”β€”
coe_equivMapOfInjective_apply πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
Subring
SetLike.instMembership
instSetLike
map
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivMapOfInjective
β€”β€”
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_iSup_of_directed πŸ“–mathematicalDirected
Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
β€”Set.ext
mem_iSup_of_directed
coe_inclusion πŸ“–mathematicalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
toRing
RingHom.instFunLike
inclusion
β€”β€”
coe_inf πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_map πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
map
Set.image
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
β€”β€”
coe_prod πŸ“–mathematicalβ€”SetLike.coe
Subring
Prod.instRing
instSetLike
prod
SProd.sprod
Set
Set.instSProd
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
coe_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
Subring
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
Set
Set.instMembership
β€”Set.ext
mem_sSup_of_directedOn
coe_top πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
Top.top
instTop
Set.univ
β€”β€”
comap_comap πŸ“–mathematicalβ€”comap
RingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”β€”
comap_equiv_eq_map_symm πŸ“–mathematicalβ€”comap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
Ring.toSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map
RingEquiv.symm
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_equiv_eq_comap_symm
comap_iInf πŸ“–mathematicalβ€”comap
iInf
Subring
instInfSet
β€”GaloisConnection.u_iInf
gc_map_comap
comap_inf πŸ“–mathematicalβ€”comap
Subring
instMin
β€”GaloisConnection.u_inf
gc_map_comap
comap_map_eq πŸ“–mathematicalβ€”comap
map
Subring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
closure
Set.preimage
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”le_antisymm
mem_map
mem_comap
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_self
closure_eq
closure_union
add_sub_cancel
add_mem
subset_closure
map_le_iff_le_comap
map_sup
RingHom.map_closure
le_of_eq
sup_eq_left
closure_le
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_preimage_subset
Set.singleton_subset_iff
zero_mem
comap_map_eq_self πŸ“–mathematicalSet
Set.instHasSubset
Set.preimage
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.coe
Subring
instSetLike
comap
map
β€”left_eq_sup
closure_le
comap_map_eq
comap_map_eq_self_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
comap
map
β€”SetLike.coe_injective
Set.preimage_image_eq
comap_top πŸ“–mathematicalβ€”comap
Top.top
Subring
instTop
β€”GaloisConnection.u_top
gc_map_comap
eq_top_iff' πŸ“–mathematicalβ€”Top.top
Subring
instTop
SetLike.instMembership
instSetLike
β€”eq_top_iff
mem_top
exists_list_of_mem_closure πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Distrib.toMul
β€”AddSubgroup.closure_induction
Submonoid.exists_list_of_mem_closure
add_zero
AddSemigroup.to_isLawfulIdentity
AddSemigroup.to_isAssociative
neg_zero
neg_mul
one_mul
neg_add_rev
add_comm
mem_closure_iff
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
Subring
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
instFaithfulSMulSubtypeMem πŸ“–mathematicalβ€”FaithfulSMul
Subring
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”Subsemiring.faithfulSMul
instIsScalarTowerSubtypeMem πŸ“–mathematicalβ€”IsScalarTower
Subring
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”Subsemiring.isScalarTower
instSMulCommClassSubtypeMemCenter πŸ“–mathematicalβ€”SMulCommClass
Subring
SetLike.instMembership
instSetLike
center
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
MulAction.toSemigroupAction
instSMulSubtypeMem
β€”Submonoid.instSMulCommClassSubtypeMemCenter_1
instSMulCommClassSubtypeMemCenter_1 πŸ“–mathematicalβ€”SMulCommClass
Subring
SetLike.instMembership
instSetLike
center
instSMulSubtypeMem
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
MulAction.toSemigroupAction
β€”Submonoid.instSMulCommClassSubtypeMemCenter
list_prod_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”list_prod_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
list_sum_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”list_sum_mem
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
map_bot πŸ“–mathematicalβ€”map
Bot.bot
Subring
instBot
β€”GaloisConnection.l_bot
gc_map_comap
map_comap_eq πŸ“–mathematicalβ€”map
comap
Subring
instMin
RingHom.range
β€”SetLike.coe_injective
Set.image_preimage_eq_inter_range
map_comap_eq_self πŸ“–mathematicalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RingHom.range
map
comap
β€”inf_of_le_left
map_comap_eq
map_comap_eq_self_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
map
comap
β€”map_comap_eq_self
RingHom.range_eq_top_of_surjective
map_equiv_eq_comap_symm πŸ“–mathematicalβ€”map
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
Ring.toSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
comap
RingEquiv.symm
β€”SetLike.coe_injective
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Equiv.image_eq_preimage_symm
map_iInf πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
map
iInf
Subring
instInfSet
β€”SetLike.coe_injective
coe_iInf
Set.InjOn.image_iInter_eq
Set.injOn_of_injective
map_iSup πŸ“–mathematicalβ€”map
iSup
Subring
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
gc_map_comap
map_id πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”SetLike.coe_injective
Set.image_id
map_inf πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
map
Subring
instMin
β€”SetLike.coe_injective
Set.image_inter
map_le_iff_le_comap πŸ“–mathematicalβ€”Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_map πŸ“–mathematicalβ€”map
RingHom.comp
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”SetLike.coe_injective
Set.image_image
map_sup πŸ“–mathematicalβ€”map
Subring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
gc_map_comap
mem_bot πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
Bot.bot
instBot
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”RingHom.mem_range
mem_center_iff πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Subsemigroup.mem_center_iff
mem_centralizer_iff πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”β€”
mem_closure πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_iff πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
closure
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
AddSubgroup.closure
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.instSetLike
Submonoid.closure
β€”closure_induction
AddSubgroup.subset_closure
Submonoid.subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
AddSubgroup.instAddSubgroupClass
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
NegMemClass.neg_mem
AddSubgroupClass.toNegMemClass
AddSubgroup.closure_inductionβ‚‚
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroClass.zero_mul
MulZeroClass.mul_zero
add_mul
Distrib.rightDistribClass
mul_add
Distrib.leftDistribClass
neg_mul
mul_neg
AddSubgroup.closure_induction
Submonoid.closure_induction
subset_closure
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
instSubringClass
SubsemiringClass.toSubmonoidClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toNegMemClass
mem_closure_image_of πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
closure
Set.image
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
β€”RingHom.map_closure
mem_map
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
Subring
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_comap πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
comap
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
β€”β€”
mem_iInf πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup_of_directed πŸ“–mathematicalDirected
Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”Submonoid.coe_iSup_of_directed
AddSubgroup.coe_iSup_of_directed
iSup_le
Set.mem_iUnion
le_iSup
mem_inf πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
instMin
β€”β€”
mem_map πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
β€”β€”
mem_map_equiv πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
map
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
Ring.toSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
DFunLike.coe
RingEquiv.symm
β€”Set.mem_image_equiv
mem_prod πŸ“–mathematicalβ€”Subring
Prod.instRing
SetLike.instMembership
instSetLike
prod
β€”β€”
mem_sInf πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
mem_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
Subring
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set
Set.instMembership
β€”sSup_eq_iSup'
mem_iSup_of_directed
Set.Nonempty.to_subtype
DirectedOn.directed_val
mem_top πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
Top.top
instTop
β€”Set.mem_univ
multiset_prod_mem πŸ“–mathematicalSubring
CommRing.toRing
SetLike.instMembership
instSetLike
Multiset.prod
CommRing.toCommMonoid
β€”multiset_prod_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
multiset_sum_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”multiset_sum_mem
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
notMem_of_notMem_closure πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
prod_bot_sup_bot_prod πŸ“–mathematicalβ€”Subring
Prod.instRing
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
prod
Bot.bot
instBot
β€”le_antisymm
sup_le
prod_mono_right
bot_le
prod_mono_left
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
le_sup_left
SetLike.mem_coe
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
le_sup_right
Prod.fst_mul_snd
prod_mem πŸ“–mathematicalSubring
CommRing.toRing
SetLike.instMembership
instSetLike
Finset.prod
CommRing.toCommMonoid
β€”prod_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
prod_mono πŸ“–mathematicalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Prod.instRing
prod
β€”Set.prod_mono
prod_mono_left πŸ“–mathematicalβ€”Monotone
Subring
Prod.instRing
PartialOrder.toPreorder
instPartialOrder
prod
β€”prod_mono
le_refl
prod_mono_right πŸ“–mathematicalβ€”Monotone
Subring
Prod.instRing
PartialOrder.toPreorder
instPartialOrder
prod
β€”prod_mono
le_refl
prod_top πŸ“–mathematicalβ€”prod
Top.top
Subring
instTop
comap
Prod.instRing
RingHom.fst
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”ext
range_fst πŸ“–mathematicalβ€”RingHom.rangeS
Prod.instNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.fst
Top.top
Subsemiring
Subsemiring.instTop
β€”RingHom.rangeS_top_of_surjective
Prod.fst_surjective
Zero.instNonempty
range_snd πŸ“–mathematicalβ€”RingHom.rangeS
Prod.instNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.snd
Top.top
Subsemiring
Subsemiring.instTop
β€”RingHom.rangeS_top_of_surjective
Prod.snd_surjective
Zero.instNonempty
range_subtype πŸ“–mathematicalβ€”RingHom.range
Subring
SetLike.instMembership
instSetLike
toRing
subtype
β€”SetLike.coe_injective
RingHom.coe_rangeS
Subtype.range_coe
sInf_toAddSubgroup πŸ“–mathematicalβ€”toAddSubgroup
InfSet.sInf
Subring
instInfSet
iInf
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instInfSet
Set
Set.instMembership
β€”mk'_toAddSubgroup
sInf_toSubmonoid πŸ“–mathematicalβ€”Subsemiring.toSubmonoid
Semiring.toNonAssocSemiring
Ring.toSemiring
toSubsemiring
InfSet.sInf
Subring
instInfSet
iInf
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instInfSet
Set
Set.instMembership
β€”mk'_toSubmonoid
smulCommClass_left πŸ“–mathematicalβ€”SMulCommClass
Subring
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”Subsemiring.smulCommClass_left
smulCommClass_right πŸ“–mathematicalβ€”SMulCommClass
Subring
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”Subsemiring.smulCommClass_right
smul_def πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
instSMulSubtypeMem
β€”β€”
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Subring
instSetLike
closure
β€”mem_closure
sum_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”sum_mem
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
toAddSubgroup_eq_top πŸ“–mathematicalβ€”toAddSubgroup
Top.top
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instTop
Subring
instTop
β€”β€”
toAddSubgroup_le_toAddSubgroup πŸ“–mathematicalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instPartialOrder
toAddSubgroup
β€”β€”
toAddSubgroup_lt_toAddSubgroup πŸ“–mathematicalSubring
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instPartialOrder
toAddSubgroup
β€”β€”
toAddSubgroup_mono πŸ“–mathematicalβ€”Monotone
Subring
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
PartialOrder.toPreorder
instPartialOrder
AddSubgroup.instPartialOrder
toAddSubgroup
β€”StrictMono.monotone
toAddSubgroup_strictMono
toAddSubgroup_strictMono πŸ“–mathematicalβ€”StrictMono
Subring
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
PartialOrder.toPreorder
instPartialOrder
AddSubgroup.instPartialOrder
toAddSubgroup
β€”β€”
toAddSubgroup_top πŸ“–mathematicalβ€”toAddSubgroup
Top.top
Subring
instTop
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instTop
β€”β€”
toSubmonoid_mono πŸ“–mathematicalβ€”Monotone
Subring
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
PartialOrder.toPreorder
instPartialOrder
Submonoid.instPartialOrder
Subsemiring.toSubmonoid
toSubsemiring
β€”StrictMono.monotone
toSubmonoid_strictMono
toSubmonoid_strictMono πŸ“–mathematicalβ€”StrictMono
Subring
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
PartialOrder.toPreorder
instPartialOrder
Submonoid.instPartialOrder
Subsemiring.toSubmonoid
toSubsemiring
β€”β€”
toSubsemiring_eq_top πŸ“–mathematicalβ€”toSubsemiring
Top.top
Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Subsemiring.instTop
Subring
instTop
β€”β€”
toSubsemiring_le_toSubsemiring πŸ“–mathematicalSubring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Subsemiring.instPartialOrder
toSubsemiring
β€”β€”
toSubsemiring_lt_toSubsemiring πŸ“–mathematicalSubring
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Subsemiring.instPartialOrder
toSubsemiring
β€”β€”
toSubsemiring_mono πŸ“–mathematicalβ€”Monotone
Subring
Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
PartialOrder.toPreorder
instPartialOrder
Subsemiring.instPartialOrder
toSubsemiring
β€”StrictMono.monotone
toSubsemiring_strictMono
toSubsemiring_strictMono πŸ“–mathematicalβ€”StrictMono
Subring
Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
PartialOrder.toPreorder
instPartialOrder
Subsemiring.instPartialOrder
toSubsemiring
β€”β€”
toSubsemiring_top πŸ“–mathematicalβ€”toSubsemiring
Top.top
Subring
instTop
Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Subsemiring.instTop
β€”β€”
topEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Subring
SetLike.instMembership
instSetLike
Top.top
instTop
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
topEquiv
Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Subsemiring.instSetLike
Subsemiring.instTop
β€”β€”
topEquiv_symm_apply_coe πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
SetLike.instMembership
Subsemiring.instSetLike
Top.top
Subsemiring.instTop
DFunLike.coe
RingEquiv
Subring
instSetLike
instTop
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
topEquiv
β€”β€”
top_prod πŸ“–mathematicalβ€”prod
Top.top
Subring
instTop
comap
Prod.instRing
RingHom.snd
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”ext
top_prod_top πŸ“–mathematicalβ€”prod
Top.top
Subring
instTop
Prod.instRing
β€”top_prod
comap_top

Subring.InClosure

Theorems

NameKindAssumesProvesValidatesDepends On
recOn πŸ“–β€”Subring
SetLike.instMembership
Subring.instSetLike
Subring.closure
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toAdd
β€”β€”add_neg_cancel
Subring.exists_list_of_mem_closure
neg_one_mul
neg_mul_eq_mul_neg
neg_neg

Subring.center

Theorems

NameKindAssumesProvesValidatesDepends On
coe_div πŸ“–mathematicalβ€”Subring
DivisionRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.center
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Subring.instField
β€”β€”
coe_inv πŸ“–mathematicalβ€”Subring
DivisionRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.center
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
Subring.instField
GroupWithZero.toDivisionMonoid
DivisionSemiring.toGroupWithZero
DivisionRing.toDivisionSemiring
β€”β€”
smulCommClass_left πŸ“–mathematicalβ€”SMulCommClass
Subring
SetLike.instMembership
Subring.instSetLike
Subring.center
Subring.instSMulSubtypeMem
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Subsemiring.center.smulCommClass_left
smulCommClass_right πŸ“–mathematicalβ€”SMulCommClass
Subring
SetLike.instMembership
Subring.instSetLike
Subring.center
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DistribSMul.toSMulZeroClass
instDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Subring.instSMulSubtypeMem
β€”Subsemiring.center.smulCommClass_right

---

← Back to Index