| Metric | Count |
DefinitionsofLeftInverse, restrict, subringCongr, subringMap, eqLocus, fintypeRange, range, rangeRestrict, center, centerCongr, centerToMulOpposite, centralizer, closure, closureCommRingOfComm, comap, decidableMemCenter, equivMapOfInjective, gi, inclusion, instBot, instCommRingSubtypeMemCenter, instCompleteLattice, instDistribMulActionSubtypeMem, instField, instFintypeSubtypeMemTop, instInfSet, instInhabited, instMin, instModuleSubtypeMem, instMulActionSubtypeMem, instMulActionWithZeroSubtypeMem, instMulDistribMulActionSubtypeMem, instMulSemiringActionSubtypeMem, instSMulSubtypeMem, instSMulWithZeroSubtypeMem, instTop, map, prod, prodEquiv, topEquiv | 40 |
Theoremsint_mul_mem, ofLeftInverse_apply, ofLeftInverse_symm_apply, restrict_apply_coe, restrict_symm_apply_coe, closure_preimage_le, coe_range, coe_rangeRestrict, eqLocus_same, eqOn_set_closure, eq_of_eqOn_set_dense, eq_of_eqOn_set_top, map_closure, map_range, mem_eqLocus, mem_range, mem_range_self, rangeRestrict_surjective, range_eq_map, range_eq_top, range_eq_top_of_surjective, recOn, card_top, coe_div, coe_inv, smulCommClass_left, smulCommClass_right, centerCongr_apply_coe, centerCongr_symm_apply_coe, centerToMulOpposite_apply_coe, centerToMulOpposite_symm_apply_coe, center_eq_top, center_le_centralizer, center_toSubsemiring, centralizer_eq_top_iff_subset, centralizer_le, centralizer_toSubmonoid, centralizer_toSubsemiring, centralizer_univ, closure_empty, closure_eq, closure_eq_of_le, closure_iUnion, closure_induction, closure_inductionβ, closure_insert_intCast, closure_insert_natCast, closure_insert_one, closure_insert_zero, closure_le, closure_le_centralizer_centralizer, closure_mono, closure_preimage_le, closure_sUnion, closure_singleton_intCast, closure_singleton_natCast, closure_singleton_one, closure_singleton_zero, closure_union, closure_univ, coe_bot, coe_center, coe_centralizer, coe_comap, coe_equivMapOfInjective_apply, coe_iInf, coe_iSup_of_directed, coe_inclusion, coe_inf, coe_map, coe_prod, coe_sInf, coe_sSup_of_directedOn, coe_top, comap_comap, comap_equiv_eq_map_symm, comap_iInf, comap_inf, comap_map_eq, comap_map_eq_self, comap_map_eq_self_of_injective, comap_top, eq_top_iff', exists_list_of_mem_closure, gc_map_comap, instFaithfulSMulSubtypeMem, instIsScalarTowerSubtypeMem, instSMulCommClassSubtypeMemCenter, instSMulCommClassSubtypeMemCenter_1, list_prod_mem, list_sum_mem, map_bot, map_comap_eq, map_comap_eq_self, map_comap_eq_self_of_surjective, map_equiv_eq_comap_symm, map_iInf, map_iSup, map_id, map_inf, map_le_iff_le_comap, map_map, map_sup, mem_bot, mem_center_iff, mem_centralizer_iff, mem_closure, mem_closure_iff, mem_closure_image_of, mem_closure_of_mem, mem_comap, mem_iInf, mem_iSup_of_directed, mem_inf, mem_map, mem_map_equiv, mem_prod, mem_sInf, mem_sSup_of_directedOn, mem_top, multiset_prod_mem, multiset_sum_mem, notMem_of_notMem_closure, prod_bot_sup_bot_prod, prod_mem, prod_mono, prod_mono_left, prod_mono_right, prod_top, range_fst, range_snd, range_subtype, sInf_toAddSubgroup, sInf_toSubmonoid, smulCommClass_left, smulCommClass_right, smul_def, subset_closure, sum_mem, toAddSubgroup_eq_top, toAddSubgroup_le_toAddSubgroup, toAddSubgroup_lt_toAddSubgroup, toAddSubgroup_mono, toAddSubgroup_strictMono, toAddSubgroup_top, toSubmonoid_mono, toSubmonoid_strictMono, toSubsemiring_eq_top, toSubsemiring_le_toSubsemiring, toSubsemiring_lt_toSubsemiring, toSubsemiring_mono, toSubsemiring_strictMono, toSubsemiring_top, topEquiv_apply, topEquiv_symm_apply_coe, top_prod, top_prod_top | 157 |
| Total | 197 |
| Name | Category | Theorems |
center π | CompOp | 28 mathmath: mem_center_iff, center.smulCommClass_right, instSMulCommClassSubtypeMemCenter, centralizer_eq_top_iff_subset, center.coe_div, center.coe_inv, centerCongr_apply_coe, ExpChar.expChar_center_iff, center_eq_top, CharP.charP_center_iff, centerToMulOpposite_symm_apply_coe, centralizer_univ, center_toSubsemiring, centerToMulOpposite_apply_coe, IsSimpleRing.isField_center, centerCongr_symm_apply_coe, center.smulCommClass_left, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent, instCharPLinearMapSubtypeMemSubringCenterId, instSMulCommClassSubtypeMemCenter_1, instExpCharLinearMapSubtypeMemSubringCenterId, coe_center, Subalgebra.center_toSubring, LinearMap.commute_transvections_iff_of_basis, Matrix.subringCenter_eq_scalar_map, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent_of_basis, JacobsonNoether.exists_separable_and_not_isCentral, center_le_centralizer
|
centerCongr π | CompOp | 2 mathmath: centerCongr_apply_coe, centerCongr_symm_apply_coe
|
centerToMulOpposite π | CompOp | 2 mathmath: centerToMulOpposite_symm_apply_coe, centerToMulOpposite_apply_coe
|
centralizer π | CompOp | 9 mathmath: centralizer_toSubsemiring, centralizer_eq_top_iff_subset, closure_le_centralizer_centralizer, centralizer_le, centralizer_univ, mem_centralizer_iff, coe_centralizer, center_le_centralizer, centralizer_toSubmonoid
|
closure π | CompOp | 51 mathmath: CommRingCat.closure_range_union_range_eq_top_of_isPushout, Polynomial.monic_restriction, closure_singleton_intCast, closure_singleton_one, Polynomial.evalβ_restriction, Algebra.mem_adjoin_iff, Polynomial.restriction_one, closure_singleton_natCast, Polynomial.degree_restriction, closure_mono, Subfield.mem_closure_iff, mem_closure, iInf_valuationSubring_superset, comap_map_eq, closure_union, closure_eq, closure_le_centralizer_centralizer, Polynomial.restriction_zero, closure_insert_natCast, is_noetherian_subring_closure, Algebra.adjoin_eq_ring_closure, mem_closure_iff, RingHom.eqOn_set_closure, subset_closure, smul_closure, Subfield.subring_closure_le, closure_insert_zero, closure_preimage_le, Polynomial.map_restriction, closure_empty, Polynomial.mem_closure_X_union_C, isIntegral_iff_isIntegral_closure_finite, unop_closure, Polynomial.coeff_restriction, NonUnitalSubring.unitization_range, closure_singleton_zero, mem_closure_of_mem, closure_insert_one, Polynomial.natDegree_restriction, op_closure, closure_univ, Polynomial.coeff_restriction', Polynomial.support_restriction, closure_le, Algebra.adjoin_int, closure_insert_intCast, RingHom.closure_preimage_le, RingHom.map_closure, closure_sUnion, closure_iUnion, Algebra.TensorProduct.closure_range_union_range_eq_top
|
closureCommRingOfComm π | CompOp | β |
comap π | CompOp | 20 mathmath: coe_comap, top_prod, comap_map_eq_self, comap_iInf, comap_map_eq, comap_equiv_eq_map_symm, comap_map_eq_self_of_injective, closure_preimage_le, map_comap_eq, gc_map_comap, prod_top, map_equiv_eq_comap_symm, comap_top, map_comap_eq_self_of_surjective, mem_comap, map_le_iff_le_comap, map_comap_eq_self, comap_inf, comap_comap, RingHom.closure_preimage_le
|
decidableMemCenter π | CompOp | β |
equivMapOfInjective π | CompOp | 1 mathmath: coe_equivMapOfInjective_apply
|
gi π | CompOp | β |
inclusion π | CompOp | 3 mathmath: coe_inclusion, LocalSubring.map_maximalIdeal_eq_top_of_isMax, LocalSubring.le_def
|
instBot π | CompOp | 14 mathmath: closure_singleton_intCast, closure_singleton_one, closure_singleton_natCast, op_bot, mem_bot, smul_bot, map_bot, prod_bot_sup_bot_prod, op_eq_bot, closure_empty, unop_eq_bot, unop_bot, closure_singleton_zero, coe_bot
|
instCommRingSubtypeMemCenter π | CompOp | 10 mathmath: centerCongr_apply_coe, centerToMulOpposite_symm_apply_coe, JacobsonNoether.exist_pow_eq_zero_of_le, centerToMulOpposite_apply_coe, IsSimpleRing.isField_center, centerCongr_symm_apply_coe, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent, LinearMap.commute_transvections_iff_of_basis, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent_of_basis, JacobsonNoether.exists_separable_and_not_isCentral
|
instCompleteLattice π | CompOp | 18 mathmath: coe_sSup_of_directedOn, map_iSup, mem_sSup_of_directedOn, coe_iSup_of_directed, op_sup, comap_map_eq, closure_union, op_sSup, prod_bot_sup_bot_prod, mem_iSup_of_directed, unop_sup, op_iSup, smul_sup, unop_iSup, unop_sSup, map_sup, closure_sUnion, closure_iUnion
|
instDistribMulActionSubtypeMem π | CompOp | 3 mathmath: LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent, LinearMap.commute_transvections_iff_of_basis, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent_of_basis
|
instField π | CompOp | 4 mathmath: center.coe_div, center.coe_inv, instCharPLinearMapSubtypeMemSubringCenterId, instExpCharLinearMapSubtypeMemSubringCenterId
|
instFintypeSubtypeMemTop π | CompOp | 1 mathmath: card_top
|
instInfSet π | CompOp | 17 mathmath: comap_iInf, iInf_valuationSubring_superset, LocalSubring.eq_iInf_of_isIntegrallyClosedIn, op_iInf, op_sInf, unop_sInf, Subfield.sInf_toSubring, sInf_toAddSubgroup, sInf_toSubmonoid, mem_iInf, unop_iInf, mem_sInf, eq_iInf_of_isIntegrallyClosedIn, Set.integer_eq, map_iInf, coe_sInf, coe_iInf
|
instInhabited π | CompOp | β |
instMin π | CompOp | 7 mathmath: map_inf, mem_inf, coe_inf, unop_inf, map_comap_eq, op_inf, comap_inf
|
instModuleSubtypeMem π | CompOp | 8 mathmath: Valuation.mem_leSubmodule_iff, Valuation.leSubmodule_monotone, Valuation.ltSubmodule_monotone, Valuation.ltSubmodule_le_leSubmodule, instCharPLinearMapSubtypeMemSubringCenterId, Valuation.mem_ltSubmodule_iff, instExpCharLinearMapSubtypeMemSubringCenterId, Valuation.leSubmodule_zero
|
instMulActionSubtypeMem π | CompOp | β |
instMulActionWithZeroSubtypeMem π | CompOp | β |
instMulDistribMulActionSubtypeMem π | CompOp | β |
instMulSemiringActionSubtypeMem π | CompOp | β |
instSMulSubtypeMem π | CompOp | 13 mathmath: center.smulCommClass_right, instSMulCommClassSubtypeMemCenter, instFaithfulSMulSubtypeMem, smulCommClass_right, continuousSMul, center.smulCommClass_left, smul_def, LocalSubring.instIsScalarTowerSubtypeMemSubringToSubringOfPrime, minpoly.instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure, instSMulCommClassSubtypeMemCenter_1, instIsScalarTowerSubtypeMem, smulCommClass_left, Valuation.HasExtension.instIsScalarTowerInteger
|
instSMulWithZeroSubtypeMem π | CompOp | β |
instTop π | CompOp | 36 mathmath: LocalSubring.range_toSubring, CommRingCat.closure_range_union_range_eq_top_of_isPushout, RingHom.range_eq_top_of_surjective, centralizer_eq_top_iff_subset, Algebra.toSubring_eq_top, top_prod, isLocalRing_top, ValuationSubring.toSubring_top, center_eq_top, eq_top_iff', card_top, unop_top, toSubsemiring_top, topEquiv_apply, op_top, mem_top, top_prod_top, Algebra.top_toSubring, unop_eq_top, topEquiv_symm_apply_coe, IsDiscreteValuationRing.map_algebraMap_eq_valuationSubring, coe_top, prod_top, comap_top, LaurentSeries.powerSeriesEquivSubring_apply, RingCon.range_mk', RingHom.eqLocus_same, RingHom.range_eq_map, Algebra.FormallyUnramified.range_eq_top_of_isPurelyInseparable, RingHom.range_eq_top, toAddSubgroup_eq_top, closure_univ, op_eq_top, toSubsemiring_eq_top, toAddSubgroup_top, Algebra.TensorProduct.closure_range_union_range_eq_top
|
map π | CompOp | 32 mathmath: map_iSup, LocalSubring.range_toSubring, map_inf, pointwise_smul_def, comap_map_eq_self, comap_map_eq, comap_equiv_eq_map_symm, RingHom.map_range, map_id, mem_map, map_map, LocalSubring.map_toSubring, coe_map, mem_map_equiv, map_bot, comap_map_eq_self_of_injective, map_comap_eq, IsDiscreteValuationRing.map_algebraMap_eq_valuationSubring, gc_map_comap, LaurentSeries.powerSeries_ext_subring, map_equiv_eq_comap_symm, map_comap_eq_self_of_surjective, LaurentSeries.powerSeriesEquivSubring_apply, RingHom.range_eq_map, instIsLocalRingSubtypeMemSubringMapOfNontrivial, map_le_iff_le_comap, map_comap_eq_self, coe_equivMapOfInjective_apply, map_iInf, Matrix.subringCenter_eq_scalar_map, map_sup, RingHom.map_closure
|
prod π | CompOp | 9 mathmath: top_prod, mem_prod, prod_mono_left, top_prod_top, prod_bot_sup_bot_prod, prod_top, coe_prod, prod_mono, prod_mono_right
|
prodEquiv π | CompOp | β |
topEquiv π | CompOp | 2 mathmath: topEquiv_apply, topEquiv_symm_apply_coe
|