Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/Ring/Subring/Defs.lean

Statistics

MetricCount
DefinitionstoSubring, copy, instPartialOrder, instSetLike, mk', ofClass, subtype, toAddSubgroup, toCommRing, toNonUnitalSubring, toRing, toSubsemiring, SubringClass, subtype, toCommRing, toHasIntCast, toRing, toSubring
18
TheoremstoSubring_toNonUnitalSubring, add_mem, coe_add, coe_copy, coe_eq_zero_iff, coe_intCast, coe_mk', coe_mul, coe_natCast, coe_neg, coe_ofClass, coe_one, coe_pow, coe_set_mk, coe_subtype, coe_toAddSubgroup, coe_toSubmonoid, coe_toSubsemiring, coe_zero, copy_eq, copy_toSubsemiring, ext, ext_iff, instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallNeg, instIsDomainSubtypeMem, instNoZeroDivisorsSubtypeMem, instNontrivialSubtypeMem, instSubringClass, mem_carrier, mem_mk, mem_mk', mem_toAddSubgroup, mem_toSubmonoid, mem_toSubsemiring, mk'_toAddSubgroup, mk'_toSubmonoid, mk_eq_zero, mk_le_mk, mul_mem, neg_mem, neg_mem', one_mem, one_mem_toNonUnitalSubring, pow_mem, sub_mem, subtype_apply, subtype_injective, toAddSubgroup_injective, toNonUnitalSubring_toSubring, toSubmonoid_injective, toSubsemiring_inj, toSubsemiring_injective, zero_mem, zsmul_mem, addSubgroupClass, coe_intCast, coe_natCast, coe_subtype, instIsDomainSubtypeMem, nonUnitalSubringClass, subtype_apply, subtype_injective, toNegMemClass, toSubsemiringClass, toSubring_toSubsemiring, intCast_mem
66
Total84

NonUnitalSubring

Definitions

NameCategoryTheorems
toSubring πŸ“–CompOp
2 mathmath: Subring.toNonUnitalSubring_toSubring, toSubring_toNonUnitalSubring

Theorems

NameKindAssumesProvesValidatesDepends On
toSubring_toNonUnitalSubring πŸ“–mathematicalNonUnitalSubring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Subring.toNonUnitalSubring
toSubring
β€”β€”

Subring

Definitions

NameCategoryTheorems
copy πŸ“–CompOp
4 mathmath: copy_toSubsemiring, LocalSubring.range_toSubring, coe_copy, copy_eq
instPartialOrder πŸ“–CompOp
43 mathmath: toAddSubgroup_mono, op_le_op_iff, le_op_iff, exists_le_valuationSubring_of_isIntegrallyClosedIn, Subfield.mk_le_mk, toSubmonoid_mono, toSubsemiring_mono, integralClosure_subring_le_iff, closure_mono, LocalSubring.toSubring_mono, Ideal.image_subset_nonunits_valuationSubring, closure_le_centralizer_centralizer, centralizer_le, pointwise_smul_subset_iff, prod_mono_left, Subfield.subring_closure_le, instCovariantClassHSMulLe, unop_le_unop_iff, toSubsemiring_strictMono, le_pointwise_smul_iffβ‚€, op_le_iff, le_topologicalClosure, LocalSubring.le_ofPrime, toAddSubgroup_strictMono, closure_preimage_le, gc_map_comap, pointwise_smul_le_pointwise_smul_iff, integralClosure_le_iff, pointwise_smul_le_iffβ‚€, mk_le_mk, toSubmonoid_strictMono, pointwise_smul_le_pointwise_smul_iffβ‚€, AlgebraicGeometry.Proj.valuativeCriterion_existence_aux, opEquiv_apply, opEquiv_symm_apply, subset_pointwise_smul_iff, map_le_iff_le_comap, eq_iInf_of_isIntegrallyClosedIn, AlgebraicGeometry.exists_lift_of_germInjective_aux, closure_le, center_le_centralizer, prod_mono_right, RingHom.closure_preimage_le
instSetLike πŸ“–CompOp
304 mathmath: mem_center_iff, ValuationRing.mem_integer_iff, coe_sSup_of_directedOn, coe_unop, LocalSubring.isLocalRing, orderedSubtype_coe, Valuation.ltIdeal_le_leIdeal, coe_subtype, coe_comap, center.smulCommClass_right, NumberField.canonicalEmbedding.mem_span_latticeBasis, PadicInt.mem_subring_iff, Valuation.mem_leSubmodule_iff, zero_mem, ValuationSubring.mem_toSubring, IsPurelyInseparable.inseparable', IsPurelyInseparable.elemExponent_min', Subfield.mem_toSubring, instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallNeg, RingHom.rangeRestrict_surjective, Polynomial.Splits.mem_range_of_isRoot, instSMulCommClassSubtypeMemCenter, addEquivOp_apply_coe, centralizer_eq_top_iff_subset, Polynomial.monic_restriction, coe_op, Valued.integer.compactSpace_iff_completeSpace_and_isDiscreteValuationRing_and_finite_residueField, mem_sSup_of_directedOn, Valuation.mem_ltIdeal_iff, center.coe_div, coe_inclusion, Valuation.leSubmodule_monotone, IsPurelyInseparable.elemExponent_min, Algebra.coe_algebraMap_ofSubring, instIsDiscreteValuationRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation, IsPurelyInseparable.elemExponent_def', coe_toSubsemiring, IsPurelyInseparable.hasExponent_iff, Polynomial.evalβ‚‚_restriction, center.coe_inv, Polynomial.Monic.eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one, centerCongr_apply_coe, RingEquiv.ofLeftInverse_symm_apply, ExpChar.expChar_center_iff, instIsIntegrallyClosedInSubtypeMemSubringToSubringIntegralClosure, isLocalRing_top, RingCon.comapQuotientEquivRange_symm_mk, Algebra.mem_adjoin_iff, RingEquiv.ofLeftInverse_apply, Polynomial.restriction_one, Algebra.toSubring_bot, mem_pointwise_smul_iff_inv_smul_mem, IsNonarchimedeanLocalField.instIsDiscreteValuationRingSubtypeMemSubringIntegerValueGroupWithZeroValuation, IsPurelyInseparable.exists_pow_mem_range_tensorProduct, mem_pointwise_smul_iff_inv_smul_memβ‚€, RingHom.ker_rangeRestrict, RingHom.mem_range, ext_iff, coe_iSup_of_directed, Valuation.Integers.mem_of_integral, Valuation.leIdeal_map_algebraMap_eq_leSubmodule_min, mopRingEquivOp_apply_coe, coe_mk', coe_matrix, IsDedekindDomain.HeightOneSpectrum.mem_integers_of_valuation_le_one, Valued.integer.exists_norm_lt_one, Polynomial.degree_restriction, CharP.charP_center_iff, Subfield.mem_closure_iff, mem_closure, coe_toAddSubgroup, coe_pointwise_smul, eq_top_iff', RingHom.mem_range_self, CharP.subring', card_top, NumberField.canonicalEmbedding.integerLattice.inter_ball_finite, instFaithfulSMulSubtypeMem, mem_inf, iInf_valuationSubring_superset, HahnSeries.mem_cardSuppLTSubring, Rat.HeightOneSpectrum.adicCompletion.padicEquiv_bijOn, mem_toSubsemiring, mem_perfectClosure_iff_pow_mem, Algebra.SubmersivePresentation.HasCoeffs.coeffs_subset_range, RingCon.comapQuotientEquivRange_mk, Valuation.integer.integers, minpoly.two_le_natDegree_iff, coe_mul, Valuation.Integers.isIntegrallyClosed_integers, Ideal.image_subset_nonunits_valuationSubring, closure_eq, coe_inf, IsPurelyInseparable.HasExponent.has_exponent, closure_le_centralizer_centralizer, Polynomial.restriction_zero, is_noetherian_subring_closure, mem_prod, instSubringClass, mem_inv_pointwise_smul_iff, isPurelyInseparable_iff_pow_mem, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, LocalSubring.instAtPrimeSubtypeMemSubringToSubringOfPrime, centerToMulOpposite_symm_apply_coe, mem_closure_iff, isNoetherianRing_range, Valuation.pow_Uniformizer_is_pow_generator, subtype_injective, mem_map, topEquiv_apply, CharP.subring, coe_set_mk, smulCommClass_right, mopRingEquivOp_symm_apply, mem_top, Polynomial.coeff_ofSubring, PadicInt.Coe.ringHom_apply, mem_subalgebraOfSubring, coe_map, mem_smul_pointwise_iff_exists, LocalSubring.map_maximalIdeal_eq_top_of_isMax, mem_perfectClosure_iff, IsPurelyInseparable.exponent_def', mem_map_equiv, RingHom.eqOn_set_closure, mem_bot, Valued.integer.norm_le_one, subset_closure, mem_range_of_deriv_eq_zero, IsNonarchimedeanLocalField.instFiniteResidueFieldSubtypeMemSubringIntegerValueGroupWithZeroValuation, Subfield.coe_set_mk, Valuation.ltSubmodule_monotone, FractionalIdeal.mem_dual, minpoly.mem_range_of_degree_eq_one, topEquiv_symm_apply_coe, mem_unop, RingCon.coe_comapQuotientEquivRange_mk, coe_eq_zero_iff, mem_op, Valuation.HasExtension.val_algebraMap, instIsTopologicalRing, centerToMulOpposite_apply_coe, instIsDomainSubtypeMem, IsNonarchimedeanLocalField.instCompactSpaceSubtypeMemSubringIntegerValueGroupWithZeroValuation, IntermediateField.isPurelyInseparable_adjoin_iff_pow_mem, Valued.isClosed_integer, IsLocalRing.exists_factor_valuationRing, Algebra.algebraMap_ofSubring, IsSimpleRing.isField_center, smul_mem_pointwise_smul_iffβ‚€, Valued.integer.properSpace_iff_completeSpace_and_isDiscreteValuationRing_integer_and_finite_residueField, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, Valuation.HasExtension.instIsLocalHomValuationInteger, Polynomial.filter_roots_map_range_eq_map_roots, Valued.integer.coe_span_singleton_eq_closedBall, Polynomial.map_restriction, Valued.isClopen_integer, coe_top, IsInvariantSubring.coe_subtypeHom', Valuation.HasExtension.instIsTorsionFreeInteger, mem_iSup_of_directed, Subfield.mem_mk, IsFractionRing.ringHom_fieldRange_eq_of_comp_eq, Valued.integer.isDiscreteValuationRing_of_compactSpace, isClosed_topologicalClosure, Valuation.ltSubmodule_le_leSubmodule, Valuation.leIdeal_mono, Valued.integer.norm_unit, Valuation.leIdeal_zero, integralClosure_le_iff, minpoly.ofSubring, Polynomial.mem_closure_X_union_C, LaurentSeries.powerSeriesEquivSubring_apply, mem_comap, coe_intCast, isIntegral_iff_isIntegral_closure_finite, mem_carrier, centerCongr_symm_apply_coe, isPurelyInseparable_iff, subtype_apply, Valued.integer.exists_nnnorm_lt_one, Subfield.coe_toSubring, Valued.integer.properSpace_iff_compactSpace_integer, ringEquivOpMop_symm_apply_coe, Polynomial.mem_map_range, coe_toSubmonoid, minpoly.degree_eq_one_iff, continuousSMul, coe_zero, IsPurelyInseparable.pow_mem, NumberField.mem_span_integralBasis, Polynomial.coeff_restriction, LaurentSeries.powerSeriesEquivSubring_coe_apply, isArtinianRing_range, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, Valuation.integers_nontrivial, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, center.smulCommClass_left, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent, Valuation.Integer.not_isUnit_iff_valuation_lt_one, coe_neg, minpoly.natSepDegree_eq_one_iff_pow_mem, smul_def, Valuation.exists_pow_Uniformizer, Submodule.mem_traceDual, Polynomial.toSubring_zero, Valued.isOpen_integer, Valued.integer.finite_quotient_maximalIdeal_pow_of_finite_residueField, IsPurelyInseparable.exponent_min, Valuation.integer.coe_span_singleton_eq_setOf_le_v_coe, Valued.integer.mem_iff, Polynomial.lifts_iff_liftsRing, LocalSubring.instIsScalarTowerSubtypeMemSubringToSubringOfPrime, Polynomial.Monic.eq_X_pow_char_pow_sub_C_of_natSepDegree_eq_one_of_irreducible, mem_centralizer_iff, instNontrivialSubtypeMem, instCharPLinearMapSubtypeMemSubringCenterId, mem_toAddSubgroup, instNoZeroDivisorsSubtypeMem, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, Valued.integer.isUnit_iff_norm_eq_one, mem_closure_of_mem, Valued.integer.isPrincipalIdealRing_of_compactSpace, coe_prod, IsPurelyInseparable.hasExponent_iff', instIsLocalRingSubtypeMemSubringMapOfNontrivial, IsIntegral.mem_range_algebraMap_of_minpoly_splits, Valuation.mem_ltSubmodule_iff, LocalSubring.le_def, Polynomial.natDegree_restriction, mem_mk, minpoly.instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure, minpoly.natDegree_eq_one_iff, mem_iInf, Valued.toNormedField.setOf_mem_integer_eq_closedBall, ValuationRing.instValuationRingInteger, IsPurelyInseparable.exponent_min', Valuation.mem_leIdeal_iff, instSMulCommClassSubtypeMemCenter_1, bijective_rangeRestrict_comp_of_valuationRing, coe_bot, Polynomial.coeff_restriction', Valued.integer.totallyBounded_iff_finite_residueField, Valuation.Uniformizer.is_generator, instExpCharLinearMapSubtypeMemSubringCenterId, coe_center, mem_sInf, Polynomial.support_restriction, IsFractionRing.lift_fieldRange, coe_ofClass, LinearMap.commute_transvections_iff_of_basis, mem_toSubmonoid, Subalgebra.mem_toSubring, coe_equivMapOfInjective_apply, Valuation.ltIdeal_mono, range_subtype, coe_add, ValuationRing.coe_equivInteger_apply, Algebra.algebraMap_ofSubring_apply, RootPairing.toLinearMap_apply_apply_mem_range_algebraMap, Valuation.leSubmodule_zero, Valuation.mem_integer_iff, Valued.integer.norm_coe_unit, closure_le, Subalgebra.coe_toSubring, coe_pow, IsNonarchimedeanLocalField.instCompleteSpaceSubtypeMemSubringIntegerValueGroupWithZeroValuation, IsPurelyInseparable.exponent_def, Valuation.leSubmodule_comap_algebraMap_eq_leIdeal, smul_mem_pointwise_smul_iff, instIsPrincipalIdealRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation, coe_centralizer, IsPurelyInseparable.exists_pow_pow_mem_range_tensorProduct_of_expChar, ringEquivOpMop_apply, LinearMap.exists_mem_center_apply_eq_smul_of_forall_notLinearIndependent_of_basis, JacobsonNoether.exists_separable_and_not_isCentral, instIsIntegrallyClosedSubtypeMemSubring, FixedPoints.minpoly.evalβ‚‚, Polynomial.coeffs_ofSubring, Valuation.Uniformizer.valuation_gt_one, mem_mk', Differential.ContainConstants.mem_range_of_deriv_eq_zero, coe_sInf, IsPurelyInseparable.inseparable, mem_inv_pointwise_smul_iffβ‚€, Valued.integer.exists_norm_coe_lt_one, coe_iInf, instIsScalarTowerSubtypeMem, smulCommClass_left, one_mem, RingHom.coe_range, coe_one, coe_natCast, RingHom.coe_rangeRestrict, addEquivOp_symm_apply_coe, Valuation.HasExtension.algebraMap_injective, ValuationRing.instIsFractionRingInteger, IsInvariantSubring.coe_subtypeHom, IsPurelyInseparable.elemExponent_def, RingHom.mem_eqLocus, IntermediateField.isPurelyInseparable_adjoin_simple_iff_pow_mem, Valuation.HasExtension.instIsScalarTowerInteger, Valuation.HasExtension.val_smul, Polynomial.toSubring_one
mk' πŸ“–CompOp
4 mathmath: coe_mk', mk'_toSubmonoid, mk'_toAddSubgroup, mem_mk'
ofClass πŸ“–CompOp
2 mathmath: integralClosure_subring_le_iff, coe_ofClass
subtype πŸ“–CompOp
15 mathmath: orderedSubtype_coe, coe_subtype, Polynomial.evalβ‚‚_restriction, Ideal.image_subset_nonunits_valuationSubring, subtype_injective, MvPowerSeries.map_toSubring, Algebra.algebraMap_ofSubring, IsInvariantSubring.coe_subtypeHom', subtype_apply, Subfield.toSubring_subtype_eq_subtype, Subalgebra.toSubring_subtype, Polynomial.map_toSubring, range_subtype, PowerSeries.map_toSubring, FixedPoints.minpoly.evalβ‚‚
toAddSubgroup πŸ“–CompOp
12 mathmath: toAddSubgroup_mono, toAddSubgroup_lt_toAddSubgroup, coe_toAddSubgroup, pointwise_smul_toAddSubgroup, toAddSubgroup_strictMono, sInf_toAddSubgroup, toAddSubgroup_le_toAddSubgroup, mem_toAddSubgroup, toAddSubgroup_eq_top, mk'_toAddSubgroup, toAddSubgroup_injective, toAddSubgroup_top
toCommRing πŸ“–CompOp
27 mathmath: Irreducible.maximalIdeal_eq_setOf_le_v_coe, Valued.integer.compactSpace_iff_completeSpace_and_isDiscreteValuationRing_and_finite_residueField, instIsDiscreteValuationRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation, instIsIntegrallyClosedInSubtypeMemSubringToSubringIntegralClosure, Algebra.toSubring_bot, IsNonarchimedeanLocalField.instIsDiscreteValuationRingSubtypeMemSubringIntegerValueGroupWithZeroValuation, iInf_valuationSubring_superset, Valuation.integer.integers, Valuation.Integers.isIntegrallyClosed_integers, TopCat.Sheaf.objSupIsoProdEqLocus_hom_fst, IsNonarchimedeanLocalField.instFiniteResidueFieldSubtypeMemSubringIntegerValueGroupWithZeroValuation, Valued.integer.properSpace_iff_completeSpace_and_isDiscreteValuationRing_integer_and_finite_residueField, TopCat.Sheaf.objSupIsoProdEqLocus_inv_snd, Valued.integer.isDiscreteValuationRing_of_compactSpace, minpoly.ofSubring, LaurentSeries.powerSeriesEquivSubring_apply, isIntegral_iff_isIntegral_closure_finite, LaurentSeries.powerSeriesEquivSubring_coe_apply, TopCat.Sheaf.objSupIsoProdEqLocus_hom_snd, TopCat.Sheaf.objSupIsoProdEqLocus_inv_eq_iff, Valued.integer.finite_quotient_maximalIdeal_pow_of_finite_residueField, TopCat.Sheaf.objSupIsoProdEqLocus_inv_fst, minpoly.instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure, ValuationRing.instValuationRingInteger, Irreducible.maximalIdeal_pow_eq_setOf_le_v_coe_pow, ValuationRing.coe_equivInteger_apply, instIsIntegrallyClosedSubtypeMemSubring
toNonUnitalSubring πŸ“–CompOp
4 mathmath: one_mem_toNonUnitalSubring, ValuationSubring.nonunits_le, toNonUnitalSubring_toSubring, NonUnitalSubring.toSubring_toNonUnitalSubring
toRing πŸ“–CompOp
93 mathmath: PowerSeries.coeff_toSubring, Valuation.leSubmodule_v_le_of_mem, orderedSubtype_coe, Valuation.ltIdeal_le_leIdeal, coe_subtype, Valuation.mem_leSubmodule_iff, RingHom.rangeRestrict_surjective, addEquivOp_apply_coe, Polynomial.monic_toSubring, Polynomial.monic_restriction, Valuation.mem_ltIdeal_iff, coe_inclusion, Valuation.leSubmodule_monotone, Polynomial.evalβ‚‚_restriction, RingEquiv.ofLeftInverse_symm_apply, ExpChar.expChar_center_iff, RingCon.comapQuotientEquivRange_symm_mk, RingEquiv.ofLeftInverse_apply, Polynomial.restriction_one, RingHom.ker_rangeRestrict, Valuation.ltIdeal_v_le_of_mem, mopRingEquivOp_apply_coe, Polynomial.degree_restriction, CharP.charP_center_iff, CharP.subring', RingCon.comapQuotientEquivRange_mk, Polynomial.natDegree_toSubring, coe_mul, Ideal.image_subset_nonunits_valuationSubring, Polynomial.restriction_zero, isNoetherianRing_range, subtype_injective, topEquiv_apply, CharP.subring, mopRingEquivOp_symm_apply, Polynomial.coeff_ofSubring, LocalSubring.map_maximalIdeal_eq_top_of_isMax, Polynomial.coeff_toSubring, Valuation.ltSubmodule_monotone, topEquiv_symm_apply_coe, RingCon.coe_comapQuotientEquivRange_mk, Valuation.HasExtension.val_algebraMap, instIsTopologicalRing, MvPowerSeries.map_toSubring, instIsDomainSubtypeMem, Valuation.leIdeal_v_le_of_mem, MvPowerSeries.constantCoeff_toSubring, MvPowerSeries.order_toSubring, Polynomial.support_toSubring, IsInvariantSubring.coe_subtypeHom', Valuation.HasExtension.instIsTorsionFreeInteger, Valuation.ltSubmodule_le_leSubmodule, Valuation.leIdeal_mono, Valuation.leIdeal_zero, coe_intCast, subtype_apply, ringEquivOpMop_symm_apply_coe, Valuation.ltSubmodule_v_le_of_mem, Polynomial.coeff_restriction, isArtinianRing_range, MvPowerSeries.coeff_toSubring, Polynomial.toSubring_zero, Polynomial.coeff_toSubring', PowerSeries.order_toSubring, Polynomial.degree_toSubring, instNoZeroDivisorsSubtypeMem, Valuation.HasExtension.mk_smul_mk, Valuation.mem_ltSubmodule_iff, LocalSubring.le_def, PowerSeries.constantCoeff_toSubring, Polynomial.natDegree_restriction, Valuation.mem_leIdeal_iff, bijective_rangeRestrict_comp_of_valuationRing, Polynomial.coeff_restriction', Polynomial.map_toSubring, Polynomial.support_restriction, MvPowerSeries.weightedOrder_toSubring, coe_equivMapOfInjective_apply, Valuation.ltIdeal_mono, range_subtype, coe_add, Valuation.leSubmodule_zero, ringEquivOpMop_apply, PowerSeries.map_toSubring, FixedPoints.minpoly.evalβ‚‚, coe_natCast, RingHom.coe_rangeRestrict, addEquivOp_symm_apply_coe, Valuation.HasExtension.algebraMap_injective, IsInvariantSubring.coe_subtypeHom, Valuation.HasExtension.instIsScalarTowerInteger, Valuation.HasExtension.val_smul, Polynomial.toSubring_one
toSubsemiring πŸ“–CompOp
42 mathmath: copy_toSubsemiring, toSubsemiring_inj, centralizer_toSubsemiring, toSubsemiring_injective, addEquivOp_apply_coe, Subsemiring.toSubring_toSubsemiring, coe_toSubsemiring, toSubmonoid_mono, toSubsemiring_mono, toSubsemiring_lt_toSubsemiring, Subalgebra.toSubring_toSubsemiring, mopRingEquivOp_apply_coe, coe_matrix, mem_toSubsemiring, mk'_toSubmonoid, toSubsemiring_le_toSubsemiring, toSubsemiring_top, mopRingEquivOp_symm_apply, ValuationSubring.mem_carrier, center_toSubsemiring, subalgebraOfSubring_toSubsemiring, toSubsemiring_strictMono, Subfield.coe_inf, op_toSubsemiring, ValuationSubring.mem_or_inv_mem', mem_carrier, toSubmonoid_strictMono, ringEquivOpMop_symm_apply_coe, coe_toSubmonoid, unop_toSubsemiring, Subfield.mem_toSubmonoid, sInf_toSubmonoid, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, mem_toSubmonoid, ringEquivOpMop_apply, toSubsemiring_eq_top, pointwise_smul_toSubsemiring, Subfield.mem_carrier, Subfield.coe_toSubmonoid, addEquivOp_symm_apply_coe, toSubmonoid_injective, centralizer_toSubmonoid

Theorems

NameKindAssumesProvesValidatesDepends On
add_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
AddSubgroupClass.toAddSubmonoidClass
SubringClass.addSubgroupClass
instSubringClass
coe_add πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
β€”β€”
coe_copy πŸ“–mathematicalSetLike.coe
Subring
instSetLike
copyβ€”β€”
coe_eq_zero_iff πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ZeroMemClass.zero
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
SubringClass.addSubgroupClass
instSubringClass
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
SubringClass.addSubgroupClass
instSubringClass
coe_zero
coe_intCast πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
toRing
β€”β€”
coe_mk' πŸ“–mathematicalSetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.instSetLike
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
Subring
instSetLike
mk'
β€”β€”
coe_mul πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
β€”β€”
coe_natCast πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
toRing
β€”β€”
coe_neg πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
NegMemClass.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
SubringClass.toNegMemClass
instSubringClass
β€”SubringClass.toNegMemClass
instSubringClass
coe_ofClass πŸ“–mathematicalβ€”SetLike.coe
Subring
instSetLike
ofClass
β€”β€”
coe_one πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
OneMemClass.one
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SubringClass.toSubsemiringClass
instSubringClass
β€”AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
instSubringClass
coe_pow πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
SubmonoidClass.nPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SubsemiringClass.toSubmonoidClass
Semiring.toNonAssocSemiring
SubringClass.toSubsemiringClass
instSubringClass
Monoid.toNatPow
β€”SubmonoidClass.coe_pow
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
coe_set_mk πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SetLike.coe
Subring
instSetLike
Subsemiring
Subsemiring.instSetLike
β€”β€”
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Subring
SetLike.instMembership
instSetLike
Semiring.toNonAssocSemiring
Ring.toSemiring
toRing
RingHom.instFunLike
subtype
β€”β€”
coe_toAddSubgroup πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
toAddSubgroup
Subring
instSetLike
β€”β€”
coe_toSubmonoid πŸ“–mathematicalβ€”SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.instSetLike
Subsemiring.toSubmonoid
toSubsemiring
Subring
instSetLike
β€”β€”
coe_toSubsemiring πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Subsemiring.instSetLike
toSubsemiring
Subring
instSetLike
β€”β€”
coe_zero πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
SubringClass.addSubgroupClass
instSubringClass
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
SubringClass.addSubgroupClass
instSubringClass
copy_eq πŸ“–mathematicalSetLike.coe
Subring
instSetLike
copyβ€”SetLike.coe_injective
copy_toSubsemiring πŸ“–mathematicalSetLike.coe
Subring
instSetLike
toSubsemiring
copy
Semiring.toNonAssocSemiring
Ring.toSemiring
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
β€”β€”
ext πŸ“–β€”Subring
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
β€”ext
instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMulForallForallNeg πŸ“–mathematicalβ€”CanLift
Set
Subring
SetLike.coe
instSetLike
Set.instMembership
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”
instIsDomainSubtypeMem πŸ“–mathematicalβ€”IsDomain
Subring
SetLike.instMembership
instSetLike
Ring.toSemiring
toRing
β€”NoZeroDivisors.to_isDomain
instNontrivialSubtypeMem
IsDomain.toNontrivial
instNoZeroDivisorsSubtypeMem
IsDomain.to_noZeroDivisors
instNoZeroDivisorsSubtypeMem πŸ“–mathematicalβ€”NoZeroDivisors
Subring
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
toRing
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
SubringClass.addSubgroupClass
instSubringClass
β€”Subsemiring.noZeroDivisors
instNontrivialSubtypeMem πŸ“–mathematicalβ€”Nontrivial
Subring
SetLike.instMembership
instSetLike
β€”Subsemiring.nontrivial
instSubringClass πŸ“–mathematicalβ€”SubringClass
Subring
instSetLike
β€”Subsemigroup.mul_mem'
Submonoid.one_mem'
Subsemiring.add_mem'
Subsemiring.zero_mem'
neg_mem'
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
toSubsemiring
Subring
SetLike.instMembership
instSetLike
β€”β€”
mem_mk πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Subring
SetLike.instMembership
instSetLike
Subsemiring
Subsemiring.instSetLike
β€”β€”
mem_mk' πŸ“–mathematicalSetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.instSetLike
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
Subring
SetLike.instMembership
instSetLike
mk'
Set
Set.instMembership
β€”β€”
mem_toAddSubgroup πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SetLike.instMembership
AddSubgroup.instSetLike
toAddSubgroup
Subring
instSetLike
β€”β€”
mem_toSubmonoid πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
Subsemiring.toSubmonoid
toSubsemiring
Subring
instSetLike
β€”β€”
mem_toSubsemiring πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
SetLike.instMembership
Subsemiring.instSetLike
toSubsemiring
Subring
instSetLike
β€”β€”
mk'_toAddSubgroup πŸ“–mathematicalSetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.instSetLike
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
toAddSubgroup
mk'
β€”SetLike.coe_injective
mk'_toSubmonoid πŸ“–mathematicalSetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.instSetLike
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddSubgroup.instSetLike
Subsemiring.toSubmonoid
toSubsemiring
mk'
β€”SetLike.coe_injective
mk_eq_zero πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddSubgroupClass.toAddSubmonoidClass
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
SubringClass.addSubgroupClass
instSubringClass
β€”AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
SubringClass.addSubgroupClass
instSubringClass
mk_le_mk πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Subring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subsemiring
Subsemiring.instPartialOrder
β€”β€”
mul_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
neg_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”NegMemClass.neg_mem
SubringClass.toNegMemClass
instSubringClass
neg_mem' πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Submonoid.toSubsemigroup
Subsemiring.toSubmonoid
toSubsemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”β€”
one_mem πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
instSubringClass
one_mem_toNonUnitalSubring πŸ“–mathematicalβ€”NonUnitalSubring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SetLike.instMembership
NonUnitalSubring.instSetLike
toNonUnitalSubring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Subsemiring.one_mem
pow_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”pow_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
instSubringClass
sub_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”sub_mem
SubringClass.addSubgroupClass
instSubringClass
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Subring
SetLike.instMembership
instSetLike
Semiring.toNonAssocSemiring
Ring.toSemiring
toRing
RingHom.instFunLike
subtype
β€”β€”
subtype_injective πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
toRing
RingHom.instFunLike
subtype
β€”Submonoid.subtype_injective
toAddSubgroup_injective πŸ“–mathematicalβ€”Subring
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
toAddSubgroup
β€”SetLike.ext
SetLike.ext_iff
toNonUnitalSubring_toSubring πŸ“–mathematicalβ€”NonUnitalSubring.toSubring
toNonUnitalSubring
one_mem
β€”one_mem
toSubmonoid_injective πŸ“–mathematicalβ€”Subring
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
Subsemiring.toSubmonoid
toSubsemiring
β€”SetLike.ext
SetLike.ext_iff
toSubsemiring_inj πŸ“–mathematicalβ€”toSubsemiringβ€”toSubsemiring_injective
toSubsemiring_injective πŸ“–mathematicalβ€”Subring
Subsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
toSubsemiring
β€”neg_mem'
zero_mem πŸ“–mathematicalβ€”Subring
SetLike.instMembership
instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
AddSubgroupClass.toAddSubmonoidClass
SubringClass.addSubgroupClass
instSubringClass
zsmul_mem πŸ“–mathematicalSubring
SetLike.instMembership
instSetLike
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”zsmul_mem
SubringClass.addSubgroupClass
instSubringClass

SubringClass

Definitions

NameCategoryTheorems
subtype πŸ“–CompOp
3 mathmath: subtype_injective, subtype_apply, coe_subtype
toCommRing πŸ“–CompOp
4 mathmath: Subring.integralClosure_subring_le_iff, NumberField.linearDisjoint_of_isGalois_isCoprime_discr, Subring.isIntegrallyClosed_iff, Subring.isIntegrallyClosedIn_iff
toHasIntCast πŸ“–CompOpβ€”
toRing πŸ“–CompOp
10 mathmath: NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, Subring.toIsOrderedRing, Subring.toIsStrictOrderedRing, spectrum.subset_subalgebra, coe_natCast, subtype_injective, subtype_apply, coe_subtype, instIsDomainSubtypeMem, coe_intCast

Theorems

NameKindAssumesProvesValidatesDepends On
addSubgroupClass πŸ“–mathematicalβ€”AddSubgroupClass
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”SubsemiringClass.toAddSubmonoidClass
toSubsemiringClass
toNegMemClass
coe_intCast πŸ“–mathematicalβ€”SetLike.instMembership
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
toRing
β€”β€”
coe_natCast πŸ“–mathematicalβ€”SetLike.instMembership
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
toRing
β€”β€”
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
RingHom
SetLike.instMembership
Semiring.toNonAssocSemiring
Ring.toSemiring
toRing
RingHom.instFunLike
subtype
β€”β€”
instIsDomainSubtypeMem πŸ“–mathematicalβ€”IsDomain
SetLike.instMembership
Ring.toSemiring
toRing
β€”NoZeroDivisors.to_isDomain
SubsemiringClass.nontrivial
toSubsemiringClass
IsDomain.toNontrivial
SubsemiringClass.noZeroDivisors
IsDomain.to_noZeroDivisors
nonUnitalSubringClass πŸ“–mathematicalβ€”NonUnitalSubringClass
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”SubsemiringClass.nonUnitalSubsemiringClass
toSubsemiringClass
toNegMemClass
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
SetLike.instMembership
Semiring.toNonAssocSemiring
Ring.toSemiring
toRing
RingHom.instFunLike
subtype
β€”β€”
subtype_injective πŸ“–mathematicalβ€”SetLike.instMembership
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
toRing
RingHom.instFunLike
subtype
β€”Subtype.coe_injective
toNegMemClass πŸ“–mathematicalβ€”NegMemClass
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”β€”
toSubsemiringClass πŸ“–mathematicalβ€”SubsemiringClass
Semiring.toNonAssocSemiring
Ring.toSemiring
β€”β€”

Subsemiring

Definitions

NameCategoryTheorems
toSubring πŸ“–CompOp
1 mathmath: toSubring_toSubsemiring

Theorems

NameKindAssumesProvesValidatesDepends On
toSubring_toSubsemiring πŸ“–mathematicalSubsemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Subring.toSubsemiring
toSubring
β€”β€”

(root)

Definitions

NameCategoryTheorems
SubringClass πŸ“–CompData
6 mathmath: StarSubalgebra.subringClass, Subring.instSubringClass, ValuationSubring.instSubringClass, Subalgebra.instSubringClass, VonNeumannAlgebra.instSubringClass, SubfieldClass.toSubringClass

Theorems

NameKindAssumesProvesValidatesDepends On
intCast_mem πŸ“–mathematicalβ€”SetLike.instMembership
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”SubringClass.addSubgroupClass
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass

---

← Back to Index