| Metric | Count |
DefinitionsofLeftInverseS, subsemiringCongr, subsemiringMap, codRestrict, fintypeRangeS, rangeS, rangeSRestrict, restrict, subsemiringClosure, center, commSemiring, commSemiring', centerCongr, centerToMulOpposite, centralizer, closure, closureCommSemiringOfComm, comap, decidableMemCenter, distribMulAction, equivMapOfInjective, gi, inclusion, instBot, instCompleteLattice, instInfSet, instInhabited, instModuleSubtypeMem, instMulActionWithZeroSubtypeMem, instMulSemiringActionSubtypeMem, instSMulWithZeroSubtypeMem, instSMulWithZeroSubtypeMem_1, map, mulAction, mulActionWithZero, mulDistribMulAction, prod, prodEquiv, smul, topEquiv | 40 |
TheoremsofLeftInverseS_apply, ofLeftInverseS_symm_apply, subsemiringMap_apply_coe, subsemiringMap_symm_apply_coe, codRestrict_apply, coe_rangeS, coe_rangeSRestrict, coe_restrict_apply, comp_restrict, eqOn_sclosure, eq_of_eqOn_sdense, eq_of_eqOn_stop, injective_codRestrict, map_closureS, map_rangeS, mem_rangeS, mem_rangeS_self, rangeSRestrict_surjective, rangeS_codRestrict, rangeS_eq_map, rangeS_eq_top, rangeS_toSubmonoid, rangeS_top_iff_surjective, rangeS_top_of_surjective, sclosure_preimage_le, surjective_codRestrict, subsemiringClosure_coe, subsemiringClosure_eq_closure, subsemiringClosure_mem, subsemiringClosure_toAddSubmonoid, subsemiringClosure_toNonUnitalSubsemiring, smulCommClass_left, smulCommClass_right, centerCongr_apply_coe, centerCongr_symm_apply_coe, centerToMulOpposite_apply_coe, centerToMulOpposite_symm_apply_coe, center_eq_top, center_le_centralizer, center_toSubmonoid, centralizer_centralizer_centralizer, centralizer_eq_top_iff_subset, centralizer_le, centralizer_toSubmonoid, centralizer_univ, closure_addSubmonoid_closure, closure_empty, closure_eq, closure_eq_of_le, closure_iUnion, closure_induction, closure_inductionβ, closure_insert_natCast, closure_insert_one, closure_insert_zero, closure_le, closure_le_centralizer_centralizer, closure_mono, closure_sUnion, closure_singleton_natCast, closure_singleton_one, closure_singleton_zero, closure_submonoid_closure, closure_union, closure_univ, coe_bot, coe_center, coe_centralizer, coe_closure_eq, coe_comap, coe_equivMapOfInjective_apply, coe_iInf, coe_iSup_of_directed, coe_map, coe_prod, coe_sInf, coe_sSup_of_directedOn, comap_comap, comap_equiv_eq_map_symm, comap_iInf, comap_inf, comap_map_eq_self_of_injective, comap_toSubmonoid, comap_top, eq_top_iff', faithfulSMul, gc_map_comap, inclusion_injective, instFaithfulSMulSubtypeMem, instSMulCommClassSubtypeMemCenter, instSMulCommClassSubtypeMemCenter_1, isScalarTower, le_centralizer_centralizer, list_prod_mem, list_sum_mem, map_bot, map_comap_eq, map_comap_eq_self, map_comap_eq_self_of_surjective, map_equiv_eq_comap_symm, map_iInf, map_iSup, map_id, map_inf, map_le_iff_le_comap, map_map, map_sup, map_toSubmonoid, mem_bot, mem_center_iff, mem_centralizer_iff, mem_closure, mem_closure_iff, mem_closure_iff_exists_list, mem_closure_of_mem, mem_comap, mem_iInf, mem_iSup_of_directed, mem_map, mem_map_equiv, mem_prod, mem_sInf, mem_sSup_of_directedOn, multiset_prod_mem, multiset_sum_mem, notMem_of_notMem_closure, prod_bot_sup_bot_prod, prod_mem, prod_mono, prod_mono_left, prod_mono_right, prod_top, rangeS_subtype, range_fst, range_snd, sInf_toAddSubmonoid, sInf_toSubmonoid, smulCommClass_left, smulCommClass_right, smul_def, subset_closure, sum_mem, toAddSubmonoid_mono, toAddSubmonoid_strictMono, toSubmonoid_mono, toSubmonoid_strictMono, topEquiv_apply, topEquiv_symm_apply_coe, top_prod, top_prod_top, instCharZero | 151 |
| Total | 191 |
| Name | Category | Theorems |
center π | CompOp | 21 mathmath: CentroidHom.star_centerToCentroidCenter, Subalgebra.center_toSubsemiring, center_eq_top, centerCongr_symm_apply_coe, Matrix.subsemiringCenter_eq_scalar_map, centerCongr_apply_coe, centerToMulOpposite_symm_apply_coe, center_toSubmonoid, centerToMulOpposite_apply_coe, Subring.center_toSubsemiring, center.smulCommClass_right, instSMulCommClassSubtypeMemCenter_1, instSMulCommClassSubtypeMemCenter, centralizer_eq_top_iff_subset, CentroidHom.centerToCentroidCenter_apply, centralizer_univ, coe_center, Module.End.mem_subsemiringCenter_iff, mem_center_iff, center_le_centralizer, center.smulCommClass_left
|
centerCongr π | CompOp | 2 mathmath: centerCongr_symm_apply_coe, centerCongr_apply_coe
|
centerToMulOpposite π | CompOp | 2 mathmath: centerToMulOpposite_symm_apply_coe, centerToMulOpposite_apply_coe
|
centralizer π | CompOp | 12 mathmath: centralizer_le, Subring.centralizer_toSubsemiring, centralizer_centralizer_centralizer, CentroidHom.centroid_eq_centralizer_mulLeftRight, closure_le_centralizer_centralizer, mem_centralizer_iff, centralizer_toSubmonoid, coe_centralizer, centralizer_eq_top_iff_subset, centralizer_univ, le_centralizer_centralizer, center_le_centralizer
|
closure π | CompOp | 36 mathmath: closure_le, closure_addSubmonoid_closure, closure_insert_natCast, closure_mono, closure_insert_zero, mem_closure, Submonoid.subsemiringClosure_eq_closure, closure_isSquare, closure_insert_one, unop_closure, op_closure, subset_closure, closure_le_centralizer_centralizer, closure_singleton_one, IsHomogeneous.subsemiringClosure, closure_singleton_natCast, RingHom.map_closureS, closure_iUnion, closure_sUnion, closure_eq, RingHom.sclosure_preimage_le, mem_closure_iff_exists_list, coe_closure_eq, closure_empty, closure_univ, closure_union, NonUnitalSubsemiring.unitization_range, closure_submonoid_closure, Algebra.adjoin_toSubsemiring, smul_closure, closure_singleton_zero, mem_closure_of_mem, RingHom.eqOn_sclosure, IsHomogeneous.subsemiringClosure_of_isHomogeneousElem, mem_closure_iff, Algebra.adjoin_nat
|
closureCommSemiringOfComm π | CompOp | β |
comap π | CompOp | 20 mathmath: comap_iInf, gc_map_comap, RingHom.rangeS_codRestrict, prod_top, map_comap_eq_self, comap_comap, comap_top, map_comap_eq, comap_toSubmonoid, mem_comap, RingHom.sclosure_preimage_le, Subalgebra.comap_toSubsemiring, comap_inf, map_comap_eq_self_of_surjective, map_le_iff_le_comap, map_equiv_eq_comap_symm, top_prod, comap_equiv_eq_map_symm, comap_map_eq_self_of_injective, coe_comap
|
decidableMemCenter π | CompOp | β |
distribMulAction π | CompOp | β |
equivMapOfInjective π | CompOp | 1 mathmath: coe_equivMapOfInjective_apply
|
gi π | CompOp | β |
inclusion π | CompOp | 1 mathmath: inclusion_injective
|
instBot π | CompOp | 13 mathmath: op_eq_bot, mem_bot, map_bot, smul_bot, closure_singleton_one, closure_singleton_natCast, closure_empty, prod_bot_sup_bot_prod, unop_bot, unop_eq_bot, closure_singleton_zero, coe_bot, op_bot
|
instCompleteLattice π | CompOp | 20 mathmath: mem_sSup_of_directedOn, map_sup, op_sup, mem_iSup_of_directed, coe_iSup_of_directed, op_iSup, unop_sup, Algebra.sup_toSubsemiring, Algebra.iSup_toSubsemiring, Algebra.sSup_toSubsemiring, closure_iUnion, closure_sUnion, map_iSup, op_sSup, coe_sSup_of_directedOn, closure_union, prod_bot_sup_bot_prod, smul_sup, unop_sSup, unop_iSup
|
instInfSet π | CompOp | 14 mathmath: comap_iInf, mem_iInf, map_iInf, op_sInf, Algebra.sInf_toSubsemiring, coe_sInf, unop_sInf, sInf_toAddSubmonoid, Algebra.iInf_toSubsemiring, unop_iInf, sInf_toSubmonoid, coe_iInf, op_iInf, mem_sInf
|
instInhabited π | CompOp | β |
instModuleSubtypeMem π | CompOp | β |
instMulActionWithZeroSubtypeMem π | CompOp | β |
instMulSemiringActionSubtypeMem π | CompOp | β |
instSMulWithZeroSubtypeMem π | CompOp | β |
instSMulWithZeroSubtypeMem_1 π | CompOp | β |
map π | CompOp | 29 mathmath: map_map, map_sup, gc_map_comap, map_iInf, map_bot, RingHom.rangeS_toSubmonoid, coe_equivMapOfInjective_apply, map_comap_eq_self, Matrix.subsemiringCenter_eq_scalar_map, mem_map_equiv, RingEquiv.subsemiringMap_apply_coe, map_comap_eq, RingHom.map_closureS, map_id, RingEquiv.subsemiringMap_symm_apply_coe, RingHom.rangeS_eq_map, map_inf, pointwise_smul_def, map_comap_eq_self_of_surjective, map_iSup, map_toSubmonoid, mem_map, map_le_iff_le_comap, map_equiv_eq_comap_symm, comap_equiv_eq_map_symm, RingHom.map_rangeS, comap_map_eq_self_of_injective, coe_map, Subalgebra.map_toSubsemiring
|
mulAction π | CompOp | β |
mulActionWithZero π | CompOp | β |
mulDistribMulAction π | CompOp | β |
prod π | CompOp | 9 mathmath: coe_prod, prod_top, prod_mono_right, top_prod_top, prod_mono_left, prod_bot_sup_bot_prod, top_prod, mem_prod, prod_mono
|
prodEquiv π | CompOp | β |
smul π | CompOp | 11 mathmath: IsScalarTower.subsemiring, isScalarTower, smul_def, center.smulCommClass_right, instSMulCommClassSubtypeMemCenter_1, smulCommClass_left, instSMulCommClassSubtypeMemCenter, continuousSMul, smulCommClass_right, faithfulSMul, center.smulCommClass_left
|
topEquiv π | CompOp | 2 mathmath: topEquiv_symm_apply_coe, topEquiv_apply
|