Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Ring/Subsemiring/Basic.lean

Statistics

MetricCount
DefinitionsofLeftInverseS, subsemiringCongr, subsemiringMap, codRestrict, fintypeRangeS, rangeS, rangeSRestrict, restrict, subsemiringClosure, center, commSemiring, commSemiring', centerCongr, centerToMulOpposite, centralizer, closure, closureCommSemiringOfComm, comap, decidableMemCenter, distribMulAction, equivMapOfInjective, gi, inclusion, instBot, instCompleteLattice, instInfSet, instInhabited, instModuleSubtypeMem, instMulActionWithZeroSubtypeMem, instMulSemiringActionSubtypeMem, instSMulWithZeroSubtypeMem, instSMulWithZeroSubtypeMem_1, map, mulAction, mulActionWithZero, mulDistribMulAction, prod, prodEquiv, smul, topEquiv
40
TheoremsofLeftInverseS_apply, ofLeftInverseS_symm_apply, subsemiringMap_apply_coe, subsemiringMap_symm_apply_coe, codRestrict_apply, coe_rangeS, coe_rangeSRestrict, coe_restrict_apply, comp_restrict, eqOn_sclosure, eq_of_eqOn_sdense, eq_of_eqOn_stop, injective_codRestrict, map_closureS, map_rangeS, mem_rangeS, mem_rangeS_self, rangeSRestrict_surjective, rangeS_codRestrict, rangeS_eq_map, rangeS_eq_top, rangeS_toSubmonoid, rangeS_top_iff_surjective, rangeS_top_of_surjective, sclosure_preimage_le, surjective_codRestrict, subsemiringClosure_coe, subsemiringClosure_eq_closure, subsemiringClosure_mem, subsemiringClosure_toAddSubmonoid, subsemiringClosure_toNonUnitalSubsemiring, smulCommClass_left, smulCommClass_right, centerCongr_apply_coe, centerCongr_symm_apply_coe, centerToMulOpposite_apply_coe, centerToMulOpposite_symm_apply_coe, center_eq_top, center_le_centralizer, center_toSubmonoid, centralizer_centralizer_centralizer, centralizer_eq_top_iff_subset, centralizer_le, centralizer_toSubmonoid, centralizer_univ, closure_addSubmonoid_closure, closure_empty, closure_eq, closure_eq_of_le, closure_iUnion, closure_induction, closure_inductionβ‚‚, closure_insert_natCast, closure_insert_one, closure_insert_zero, closure_le, closure_le_centralizer_centralizer, closure_mono, closure_sUnion, closure_singleton_natCast, closure_singleton_one, closure_singleton_zero, closure_submonoid_closure, closure_union, closure_univ, coe_bot, coe_center, coe_centralizer, coe_closure_eq, coe_comap, coe_equivMapOfInjective_apply, coe_iInf, coe_iSup_of_directed, coe_map, coe_prod, coe_sInf, coe_sSup_of_directedOn, comap_comap, comap_equiv_eq_map_symm, comap_iInf, comap_inf, comap_map_eq_self_of_injective, comap_toSubmonoid, comap_top, eq_top_iff', faithfulSMul, gc_map_comap, inclusion_injective, instFaithfulSMulSubtypeMem, instSMulCommClassSubtypeMemCenter, instSMulCommClassSubtypeMemCenter_1, isScalarTower, le_centralizer_centralizer, list_prod_mem, list_sum_mem, map_bot, map_comap_eq, map_comap_eq_self, map_comap_eq_self_of_surjective, map_equiv_eq_comap_symm, map_iInf, map_iSup, map_id, map_inf, map_le_iff_le_comap, map_map, map_sup, map_toSubmonoid, mem_bot, mem_center_iff, mem_centralizer_iff, mem_closure, mem_closure_iff, mem_closure_iff_exists_list, mem_closure_of_mem, mem_comap, mem_iInf, mem_iSup_of_directed, mem_map, mem_map_equiv, mem_prod, mem_sInf, mem_sSup_of_directedOn, multiset_prod_mem, multiset_sum_mem, notMem_of_notMem_closure, prod_bot_sup_bot_prod, prod_mem, prod_mono, prod_mono_left, prod_mono_right, prod_top, rangeS_subtype, range_fst, range_snd, sInf_toAddSubmonoid, sInf_toSubmonoid, smulCommClass_left, smulCommClass_right, smul_def, subset_closure, sum_mem, toAddSubmonoid_mono, toAddSubmonoid_strictMono, toSubmonoid_mono, toSubmonoid_strictMono, topEquiv_apply, topEquiv_symm_apply_coe, top_prod, top_prod_top, instCharZero
151
Total191

RingEquiv

Definitions

NameCategoryTheorems
ofLeftInverseS πŸ“–CompOp
2 mathmath: ofLeftInverseS_symm_apply, ofLeftInverseS_apply
subsemiringCongr πŸ“–CompOpβ€”
subsemiringMap πŸ“–CompOp
2 mathmath: subsemiringMap_apply_coe, subsemiringMap_symm_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
ofLeftInverseS_apply πŸ“–mathematicalDFunLike.coe
RingHom
RingHom.instFunLike
Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
RingHom.rangeS
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Subsemiring.toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
ofLeftInverseS
β€”β€”
ofLeftInverseS_symm_apply πŸ“–mathematicalDFunLike.coe
RingHom
RingHom.instFunLike
RingEquiv
Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
RingHom.rangeS
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Subsemiring.toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
symm
ofLeftInverseS
β€”β€”
subsemiringMap_apply_coe πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
Subsemiring.map
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
DFunLike.coe
Subsemiring.toNonAssocSemiring
subsemiringMap
β€”RingEquivClass.toRingHomClass
instRingEquivClass
subsemiringMap_symm_apply_coe πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
DFunLike.coe
RingEquiv
Subsemiring.map
RingHomClass.toRingHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
instEquivLike
RingEquivClass.toRingHomClass
instRingEquivClass
Subsemiring.toNonAssocSemiring
symm
subsemiringMap
toRingHom
β€”RingEquivClass.toRingHomClass
instRingEquivClass

RingHom

Definitions

NameCategoryTheorems
codRestrict πŸ“–CompOp
5 mathmath: surjective_codRestrict, rangeS_codRestrict, injective_codRestrict, IsLocalRing.exists_factor_valuationRing, codRestrict_apply
fintypeRangeS πŸ“–CompOpβ€”
rangeS πŸ“–CompOp
39 mathmath: Subring.range_snd, surjective_codRestrict, rangeS_eq_top, RingCon.rangeS_kerLift, rangeS_codRestrict, rangeSRestrict_surjective, RingEquiv.ofLeftInverseS_symm_apply, CentroidHom.centroid_eq_centralizer_mulLeftRight, rangeS_toSubmonoid, RingCon.comapQuotientEquivRangeS_symm_mk, coe_rangeSRestrict, isArtinianRing_rangeS, Polynomial.lifts_iff_ringHom_rangeS, Subsemiring.map_comap_eq, RingCon.comapQuotientEquivRangeS_mk, RingCon.coe_quotientKerEquivRangeS_mk, Subsemiring.rangeS_subtype, rangeS_eq_map, Subsemiring.range_fst, mem_rangeS, rangeS_top_iff_surjective, StarSubalgebra.rangeS_le, rangeS_top_of_surjective, mem_rangeS_self, Subsemiring.range_snd, isNoetherianRing_rangeS, Subalgebra.rangeS_algebraMap, NonUnitalNonAssocSemiring.mem_center_iff, RingCon.rangeS_mk', Subring.range_fst, RingEquiv.ofLeftInverseS_apply, Subalgebra.mem_perfectClosure_iff, RingCon.rangeS_lift, map_rangeS, Subalgebra.rangeS_le, Polynomial.mem_map_rangeS, AlgHom.range_toSubsemiring, coe_rangeS, ker_rangeSRestrict
rangeSRestrict πŸ“–CompOp
3 mathmath: rangeSRestrict_surjective, coe_rangeSRestrict, ker_rangeSRestrict
restrict πŸ“–CompOp
2 mathmath: comp_restrict, coe_restrict_apply

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict_apply πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
RingHom
instFunLike
SubsemiringClass.toNonAssocSemiring
codRestrict
β€”β€”
coe_rangeS πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
Subsemiring.instSetLike
rangeS
Set.range
DFunLike.coe
RingHom
instFunLike
β€”β€”
coe_rangeSRestrict πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
rangeS
DFunLike.coe
RingHom
Subsemiring.toNonAssocSemiring
instFunLike
rangeSRestrict
β€”β€”
coe_restrict_apply πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
RingHom
instFunLike
SubsemiringClass.toNonAssocSemiring
restrict
β€”β€”
comp_restrict πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
RingHom
instFunLike
comp
SubsemiringClass.toNonAssocSemiring
SubsemiringClass.subtype
restrict
β€”β€”
eqOn_sclosure πŸ“–mathematicalSet.EqOn
DFunLike.coe
RingHom
instFunLike
SetLike.coe
Subsemiring
Subsemiring.instSetLike
Subsemiring.closure
β€”Subsemiring.closure_le
eq_of_eqOn_sdense πŸ“–β€”Subsemiring.closure
Top.top
Subsemiring
Subsemiring.instTop
Set.EqOn
DFunLike.coe
RingHom
instFunLike
β€”β€”eq_of_eqOn_stop
eqOn_sclosure
eq_of_eqOn_stop πŸ“–β€”Set.EqOn
DFunLike.coe
RingHom
instFunLike
SetLike.coe
Subsemiring
Subsemiring.instSetLike
Top.top
Subsemiring.instTop
β€”β€”ext
Subsemiring.mem_top
injective_codRestrict πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
RingHom
instFunLike
SubsemiringClass.toNonAssocSemiring
codRestrict
β€”Set.injective_codRestrict
map_closureS πŸ“–mathematicalβ€”Subsemiring.map
Subsemiring.closure
Set.image
DFunLike.coe
RingHom
instFunLike
β€”GaloisConnection.l_comm_of_u_comm
Set.image_preimage
Subsemiring.gc_map_comap
GaloisInsertion.gc
Subsemiring.coe_comap
map_rangeS πŸ“–mathematicalβ€”Subsemiring.map
rangeS
comp
β€”rangeS_eq_map
Subsemiring.map_map
mem_rangeS πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
rangeS
DFunLike.coe
RingHom
instFunLike
β€”β€”
mem_rangeS_self πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
rangeS
DFunLike.coe
RingHom
instFunLike
β€”mem_rangeS
rangeSRestrict_surjective πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
rangeS
DFunLike.coe
RingHom
Subsemiring.toNonAssocSemiring
instFunLike
rangeSRestrict
β€”mem_rangeS
rangeS_codRestrict πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
RingHom
instFunLike
rangeS
SubsemiringClass.toNonAssocSemiring
codRestrict
Subsemiring.comap
SubsemiringClass.subtype
β€”SetLike.coe_injective
Set.range_codRestrict
rangeS_eq_map πŸ“–mathematicalβ€”rangeS
Subsemiring.map
Top.top
Subsemiring
Subsemiring.instTop
β€”Subsemiring.ext
rangeS_eq_top πŸ“–mathematicalβ€”rangeS
Top.top
Subsemiring
Subsemiring.instTop
DFunLike.coe
RingHom
instFunLike
β€”β€”
rangeS_toSubmonoid πŸ“–mathematicalβ€”Subsemiring.toSubmonoid
rangeS
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
Set.range
DFunLike.coe
RingHom
instFunLike
Subsemiring.map
Top.top
Subsemiring
Subsemiring.instTop
β€”β€”
rangeS_top_iff_surjective πŸ“–mathematicalβ€”rangeS
Top.top
Subsemiring
Subsemiring.instTop
DFunLike.coe
RingHom
instFunLike
β€”SetLike.ext'_iff
coe_rangeS
Subsemiring.coe_top
Set.range_eq_univ
rangeS_top_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
instFunLike
rangeS
Top.top
Subsemiring
Subsemiring.instTop
β€”rangeS_top_iff_surjective
sclosure_preimage_le πŸ“–mathematicalβ€”Subsemiring
Preorder.toLE
PartialOrder.toPreorder
Subsemiring.instPartialOrder
Subsemiring.closure
Set.preimage
DFunLike.coe
RingHom
instFunLike
Subsemiring.comap
β€”Subsemiring.closure_le
SetLike.mem_coe
Subsemiring.mem_comap
Subsemiring.subset_closure
surjective_codRestrict πŸ“–mathematicalSetLike.instMembership
DFunLike.coe
RingHom
instFunLike
SubsemiringClass.toNonAssocSemiring
codRestrict
rangeS
Subsemiring.ofClass
β€”Set.surjective_codRestrict
SetLike.coe_set_eq

Submonoid

Definitions

NameCategoryTheorems
subsemiringClosure πŸ“–CompOp
5 mathmath: subsemiringClosure_toAddSubmonoid, subsemiringClosure_eq_closure, subsemiringClosure_coe, subsemiringClosure_mem, subsemiringClosure_toNonUnitalSubsemiring

Theorems

NameKindAssumesProvesValidatesDepends On
subsemiringClosure_coe πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
Subsemiring.instSetLike
subsemiringClosure
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
AddSubmonoid.closure
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
instSetLike
β€”β€”
subsemiringClosure_eq_closure πŸ“–mathematicalβ€”subsemiringClosure
Subsemiring.closure
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
instSetLike
β€”Subsemiring.ext
AddSubmonoid.mem_closure
Subsemiring.mem_closure
subsemiringClosure_mem πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
subsemiringClosure
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
AddSubmonoid.closure
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
instSetLike
β€”β€”
subsemiringClosure_toAddSubmonoid πŸ“–mathematicalβ€”Subsemiring.toAddSubmonoid
subsemiringClosure
AddSubmonoid.closure
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
instSetLike
β€”β€”
subsemiringClosure_toNonUnitalSubsemiring πŸ“–mathematicalβ€”Subsemiring.toNonUnitalSubsemiring
subsemiringClosure
NonUnitalSubsemiring.closure
NonAssocSemiring.toNonUnitalNonAssocSemiring
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
instSetLike
β€”NonUnitalSubsemiring.closure_eq_of_le
AddSubmonoid.closure_induction
NonUnitalSubsemiring.mem_closure_of_mem
AddSubmonoidClass.toZeroMemClass
NonUnitalSubsemiringClass.toAddSubmonoidClass
NonUnitalSubsemiring.instNonUnitalSubsemiringClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass

Subsemiring

Definitions

NameCategoryTheorems
center πŸ“–CompOp
21 mathmath: CentroidHom.star_centerToCentroidCenter, Subalgebra.center_toSubsemiring, center_eq_top, centerCongr_symm_apply_coe, Matrix.subsemiringCenter_eq_scalar_map, centerCongr_apply_coe, centerToMulOpposite_symm_apply_coe, center_toSubmonoid, centerToMulOpposite_apply_coe, Subring.center_toSubsemiring, center.smulCommClass_right, instSMulCommClassSubtypeMemCenter_1, instSMulCommClassSubtypeMemCenter, centralizer_eq_top_iff_subset, CentroidHom.centerToCentroidCenter_apply, centralizer_univ, coe_center, Module.End.mem_subsemiringCenter_iff, mem_center_iff, center_le_centralizer, center.smulCommClass_left
centerCongr πŸ“–CompOp
2 mathmath: centerCongr_symm_apply_coe, centerCongr_apply_coe
centerToMulOpposite πŸ“–CompOp
2 mathmath: centerToMulOpposite_symm_apply_coe, centerToMulOpposite_apply_coe
centralizer πŸ“–CompOp
12 mathmath: centralizer_le, Subring.centralizer_toSubsemiring, centralizer_centralizer_centralizer, CentroidHom.centroid_eq_centralizer_mulLeftRight, closure_le_centralizer_centralizer, mem_centralizer_iff, centralizer_toSubmonoid, coe_centralizer, centralizer_eq_top_iff_subset, centralizer_univ, le_centralizer_centralizer, center_le_centralizer
closure πŸ“–CompOp
36 mathmath: closure_le, closure_addSubmonoid_closure, closure_insert_natCast, closure_mono, closure_insert_zero, mem_closure, Submonoid.subsemiringClosure_eq_closure, closure_isSquare, closure_insert_one, unop_closure, op_closure, subset_closure, closure_le_centralizer_centralizer, closure_singleton_one, IsHomogeneous.subsemiringClosure, closure_singleton_natCast, RingHom.map_closureS, closure_iUnion, closure_sUnion, closure_eq, RingHom.sclosure_preimage_le, mem_closure_iff_exists_list, coe_closure_eq, closure_empty, closure_univ, closure_union, NonUnitalSubsemiring.unitization_range, closure_submonoid_closure, Algebra.adjoin_toSubsemiring, smul_closure, closure_singleton_zero, mem_closure_of_mem, RingHom.eqOn_sclosure, IsHomogeneous.subsemiringClosure_of_isHomogeneousElem, mem_closure_iff, Algebra.adjoin_nat
closureCommSemiringOfComm πŸ“–CompOpβ€”
comap πŸ“–CompOp
20 mathmath: comap_iInf, gc_map_comap, RingHom.rangeS_codRestrict, prod_top, map_comap_eq_self, comap_comap, comap_top, map_comap_eq, comap_toSubmonoid, mem_comap, RingHom.sclosure_preimage_le, Subalgebra.comap_toSubsemiring, comap_inf, map_comap_eq_self_of_surjective, map_le_iff_le_comap, map_equiv_eq_comap_symm, top_prod, comap_equiv_eq_map_symm, comap_map_eq_self_of_injective, coe_comap
decidableMemCenter πŸ“–CompOpβ€”
distribMulAction πŸ“–CompOpβ€”
equivMapOfInjective πŸ“–CompOp
1 mathmath: coe_equivMapOfInjective_apply
gi πŸ“–CompOpβ€”
inclusion πŸ“–CompOp
1 mathmath: inclusion_injective
instBot πŸ“–CompOp
13 mathmath: op_eq_bot, mem_bot, map_bot, smul_bot, closure_singleton_one, closure_singleton_natCast, closure_empty, prod_bot_sup_bot_prod, unop_bot, unop_eq_bot, closure_singleton_zero, coe_bot, op_bot
instCompleteLattice πŸ“–CompOp
20 mathmath: mem_sSup_of_directedOn, map_sup, op_sup, mem_iSup_of_directed, coe_iSup_of_directed, op_iSup, unop_sup, Algebra.sup_toSubsemiring, Algebra.iSup_toSubsemiring, Algebra.sSup_toSubsemiring, closure_iUnion, closure_sUnion, map_iSup, op_sSup, coe_sSup_of_directedOn, closure_union, prod_bot_sup_bot_prod, smul_sup, unop_sSup, unop_iSup
instInfSet πŸ“–CompOp
14 mathmath: comap_iInf, mem_iInf, map_iInf, op_sInf, Algebra.sInf_toSubsemiring, coe_sInf, unop_sInf, sInf_toAddSubmonoid, Algebra.iInf_toSubsemiring, unop_iInf, sInf_toSubmonoid, coe_iInf, op_iInf, mem_sInf
instInhabited πŸ“–CompOpβ€”
instModuleSubtypeMem πŸ“–CompOpβ€”
instMulActionWithZeroSubtypeMem πŸ“–CompOpβ€”
instMulSemiringActionSubtypeMem πŸ“–CompOpβ€”
instSMulWithZeroSubtypeMem πŸ“–CompOpβ€”
instSMulWithZeroSubtypeMem_1 πŸ“–CompOpβ€”
map πŸ“–CompOp
29 mathmath: map_map, map_sup, gc_map_comap, map_iInf, map_bot, RingHom.rangeS_toSubmonoid, coe_equivMapOfInjective_apply, map_comap_eq_self, Matrix.subsemiringCenter_eq_scalar_map, mem_map_equiv, RingEquiv.subsemiringMap_apply_coe, map_comap_eq, RingHom.map_closureS, map_id, RingEquiv.subsemiringMap_symm_apply_coe, RingHom.rangeS_eq_map, map_inf, pointwise_smul_def, map_comap_eq_self_of_surjective, map_iSup, map_toSubmonoid, mem_map, map_le_iff_le_comap, map_equiv_eq_comap_symm, comap_equiv_eq_map_symm, RingHom.map_rangeS, comap_map_eq_self_of_injective, coe_map, Subalgebra.map_toSubsemiring
mulAction πŸ“–CompOpβ€”
mulActionWithZero πŸ“–CompOpβ€”
mulDistribMulAction πŸ“–CompOpβ€”
prod πŸ“–CompOp
9 mathmath: coe_prod, prod_top, prod_mono_right, top_prod_top, prod_mono_left, prod_bot_sup_bot_prod, top_prod, mem_prod, prod_mono
prodEquiv πŸ“–CompOpβ€”
smul πŸ“–CompOp
11 mathmath: IsScalarTower.subsemiring, isScalarTower, smul_def, center.smulCommClass_right, instSMulCommClassSubtypeMemCenter_1, smulCommClass_left, instSMulCommClassSubtypeMemCenter, continuousSMul, smulCommClass_right, faithfulSMul, center.smulCommClass_left
topEquiv πŸ“–CompOp
2 mathmath: topEquiv_symm_apply_coe, topEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
centerCongr_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
Subsemiring
instSetLike
center
toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
centerCongr
β€”β€”
centerCongr_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
Subsemiring
instSetLike
center
toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
centerCongr
MulEquiv
MulEquiv.instEquivLike
MulEquiv.symm
MulEquivClass.toMulEquiv
β€”β€”
centerToMulOpposite_apply_coe πŸ“–mathematicalβ€”MulOpposite
Subsemigroup
MulOpposite.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
Subsemiring
instSetLike
center
MulOpposite.instNonAssocSemiring
toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
centerToMulOpposite
MulOpposite.op
β€”β€”
centerToMulOpposite_symm_apply_coe πŸ“–mathematicalβ€”Subsemigroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
Subsemigroup.instSetLike
Subsemigroup.center
DFunLike.coe
RingEquiv
MulOpposite
Subsemiring
MulOpposite.instNonAssocSemiring
instSetLike
center
toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
centerToMulOpposite
MulOpposite.unop
MulOpposite.instMul
β€”β€”
center_eq_top πŸ“–mathematicalβ€”center
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Top.top
Subsemiring
instTop
β€”SetLike.coe_injective
Set.center_eq_univ
center_le_centralizer πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
center
centralizer
β€”Set.center_subset_centralizer
center_toSubmonoid πŸ“–mathematicalβ€”toSubmonoid
center
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddSubmonoid.toAddSubsemigroup
NonUnitalSubsemiring.toAddSubmonoid
NonUnitalSubsemiring.center
β€”β€”
centralizer_centralizer_centralizer πŸ“–mathematicalβ€”centralizer
Set.centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”SetLike.coe_injective
Set.centralizer_centralizer_centralizer
centralizer_eq_top_iff_subset πŸ“–mathematicalβ€”centralizer
Top.top
Subsemiring
Semiring.toNonAssocSemiring
instTop
Set
Set.instHasSubset
SetLike.coe
instSetLike
center
β€”SetLike.ext'_iff
Set.centralizer_eq_top_iff_subset
centralizer_le πŸ“–mathematicalSet
Set.instHasSubset
Subsemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
β€”Set.centralizer_subset
centralizer_toSubmonoid πŸ“–mathematicalβ€”toSubmonoid
Semiring.toNonAssocSemiring
centralizer
Submonoid.centralizer
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”β€”
centralizer_univ πŸ“–mathematicalβ€”centralizer
Set.univ
center
Semiring.toNonAssocSemiring
β€”SetLike.ext'
Set.centralizer_univ
closure_addSubmonoid_closure πŸ“–mathematicalβ€”closure
SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
AddSubmonoid.closure
β€”ext
AddSubmonoid.mem_closure
mem_closure_iff
Submonoid.mem_closure
closure_mono
AddSubmonoid.subset_closure
closure_empty πŸ“–mathematicalβ€”closure
Set
Set.instEmptyCollection
Bot.bot
Subsemiring
instBot
β€”GaloisConnection.l_bot
GaloisInsertion.gc
closure_eq πŸ“–mathematicalβ€”closure
SetLike.coe
Subsemiring
instSetLike
β€”GaloisInsertion.l_u_eq
closure_eq_of_le πŸ“–β€”Set
Set.instHasSubset
SetLike.coe
Subsemiring
instSetLike
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”β€”le_antisymm
closure_le
closure_iUnion πŸ“–mathematicalβ€”closure
Set.iUnion
iSup
Subsemiring
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
GaloisInsertion.gc
closure_induction πŸ“–β€”subset_closure
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
ZeroMemClass.zero_mem
Subsemiring
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
closure
AddMonoidWithOne.toOne
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
closure_le
closure_inductionβ‚‚ πŸ“–β€”subset_closure
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
ZeroMemClass.zero_mem
Subsemiring
instSetLike
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
closure
AddMonoidWithOne.toOne
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
SetLike.instMembership
β€”β€”subset_closure
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
closure_induction
closure_insert_natCast πŸ“–mathematicalβ€”closure
Set
Set.instInsert
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Set.insert_eq
closure_union
closure_singleton_natCast
sup_of_le_right
closure_insert_one πŸ“–mathematicalβ€”closure
Set
Set.instInsert
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Nat.cast_one
closure_insert_natCast
closure_insert_zero πŸ“–mathematicalβ€”closure
Set
Set.instInsert
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”Nat.cast_zero
closure_insert_natCast
closure_le πŸ“–mathematicalβ€”Subsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”Set.Subset.trans
subset_closure
sInf_le
closure_le_centralizer_centralizer πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
centralizer
SetLike.coe
instSetLike
β€”closure_le
Set.subset_centralizer_centralizer
closure_mono πŸ“–mathematicalSet
Set.instHasSubset
Subsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
β€”closure_le
Set.Subset.trans
subset_closure
closure_sUnion πŸ“–mathematicalβ€”closure
Set.sUnion
iSup
Subsemiring
Set
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.instMembership
β€”GaloisConnection.l_sSup
GaloisInsertion.gc
closure_singleton_natCast πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Bot.bot
Subsemiring
instBot
β€”bot_unique
closure_le
Set.singleton_subset_iff
natCast_mem
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
closure_singleton_one πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Bot.bot
Subsemiring
instBot
β€”Nat.cast_one
closure_singleton_natCast
closure_singleton_zero πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Bot.bot
Subsemiring
instBot
β€”Nat.cast_zero
closure_singleton_natCast
closure_submonoid_closure πŸ“–mathematicalβ€”closure
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Submonoid.closure
β€”le_antisymm
closure_le
Submonoid.mem_closure
subset_closure
closure_mono
Submonoid.subset_closure
closure_union πŸ“–mathematicalβ€”closure
Set
Set.instUnion
Subsemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
GaloisInsertion.gc
closure_univ πŸ“–mathematicalβ€”closure
Set.univ
Top.top
Subsemiring
instTop
β€”closure_eq
coe_top
coe_bot πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
Bot.bot
instBot
Set.range
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingHom.coe_rangeS
coe_center πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
center
AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddSubmonoid.toAddSubsemigroup
NonUnitalSubsemiring.toAddSubmonoid
NonUnitalSubsemiring.center
β€”β€”
coe_centralizer πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
Semiring.toNonAssocSemiring
instSetLike
centralizer
Set.centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”
coe_closure_eq πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
closure
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
AddSubmonoid.closure
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Submonoid.closure
β€”Submonoid.subsemiringClosure_eq_closure
closure_submonoid_closure
coe_comap πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
comap
Set.preimage
DFunLike.coe
RingHom
RingHom.instFunLike
β€”β€”
coe_equivMapOfInjective_apply πŸ“–mathematicalDFunLike.coe
RingHom
RingHom.instFunLike
Subsemiring
SetLike.instMembership
instSetLike
map
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivMapOfInjective
β€”β€”
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
iInf
instInfSet
Set.iInter
β€”Set.biInter_range
coe_iSup_of_directed πŸ“–mathematicalDirected
Subsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
β€”Set.ext
mem_iSup_of_directed
coe_map πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
map
Set.image
DFunLike.coe
RingHom
RingHom.instFunLike
β€”β€”
coe_prod πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
Prod.instNonAssocSemiring
instSetLike
prod
SProd.sprod
Set
Set.instSProd
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
InfSet.sInf
instInfSet
Set.iInter
Set
Set.instMembership
β€”β€”
coe_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
Subsemiring
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set.iUnion
Set
Set.instMembership
β€”Set.ext
mem_sSup_of_directedOn
comap_comap πŸ“–mathematicalβ€”comap
RingHom.comp
β€”β€”
comap_equiv_eq_map_symm πŸ“–mathematicalβ€”comap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map
RingEquiv.symm
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
map_equiv_eq_comap_symm
comap_iInf πŸ“–mathematicalβ€”comap
iInf
Subsemiring
instInfSet
β€”GaloisConnection.u_iInf
gc_map_comap
comap_inf πŸ“–mathematicalβ€”comap
Subsemiring
instMin
β€”GaloisConnection.u_inf
gc_map_comap
comap_map_eq_self_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
RingHom.instFunLike
comap
map
β€”SetLike.coe_injective
Set.preimage_image_eq
comap_toSubmonoid πŸ“–mathematicalβ€”toSubmonoid
comap
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
Set.preimage
DFunLike.coe
RingHom
RingHom.instFunLike
SetLike.coe
Subsemiring
instSetLike
β€”β€”
comap_top πŸ“–mathematicalβ€”comap
Top.top
Subsemiring
instTop
β€”GaloisConnection.u_top
gc_map_comap
eq_top_iff' πŸ“–mathematicalβ€”Top.top
Subsemiring
instTop
SetLike.instMembership
instSetLike
β€”eq_top_iff
mem_top
faithfulSMul πŸ“–mathematicalβ€”FaithfulSMul
Subsemiring
SetLike.instMembership
instSetLike
smul
β€”instFaithfulSMulSubtypeMem
gc_map_comap πŸ“–mathematicalβ€”GaloisConnection
Subsemiring
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”map_le_iff_le_comap
inclusion_injective πŸ“–mathematicalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
toNonAssocSemiring
RingHom.instFunLike
inclusion
β€”Set.inclusion_injective
instFaithfulSMulSubtypeMem πŸ“–mathematicalβ€”FaithfulSMul
SetLike.instMembership
Submonoid.instSMulSubtypeMem
β€”FaithfulSMul.eq_of_smul_eq_smul
instSMulCommClassSubtypeMemCenter πŸ“–mathematicalβ€”SMulCommClass
Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
center
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
smul
β€”Submonoid.instSMulCommClassSubtypeMemCenter_1
instSMulCommClassSubtypeMemCenter_1 πŸ“–mathematicalβ€”SMulCommClass
Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
center
smul
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
β€”Submonoid.instSMulCommClassSubtypeMemCenter
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
Subsemiring
SetLike.instMembership
instSetLike
smul
β€”Submonoid.instIsScalarTowerSubtypeMem
le_centralizer_centralizer πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
centralizer
SetLike.coe
instSetLike
β€”Set.subset_centralizer_centralizer
list_prod_mem πŸ“–mathematicalSubsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”list_prod_mem
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
list_sum_mem πŸ“–mathematicalSubsemiring
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”list_sum_mem
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
map_bot πŸ“–mathematicalβ€”map
Bot.bot
Subsemiring
instBot
β€”GaloisConnection.l_bot
gc_map_comap
map_comap_eq πŸ“–mathematicalβ€”map
comap
Subsemiring
instMin
RingHom.rangeS
β€”SetLike.coe_injective
Set.image_preimage_eq_inter_range
map_comap_eq_self πŸ“–mathematicalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RingHom.rangeS
map
comap
β€”inf_of_le_left
map_comap_eq
map_comap_eq_self_of_surjective πŸ“–mathematicalDFunLike.coe
RingHom
RingHom.instFunLike
map
comap
β€”map_comap_eq_self
RingHom.rangeS_top_of_surjective
map_equiv_eq_comap_symm πŸ“–mathematicalβ€”map
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
comap
RingEquiv.symm
β€”SetLike.coe_injective
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Equiv.image_eq_preimage_symm
map_iInf πŸ“–mathematicalDFunLike.coe
RingHom
RingHom.instFunLike
map
iInf
Subsemiring
instInfSet
β€”SetLike.coe_injective
coe_iInf
Set.InjOn.image_iInter_eq
Set.injOn_of_injective
map_iSup πŸ“–mathematicalβ€”map
iSup
Subsemiring
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”GaloisConnection.l_iSup
gc_map_comap
map_id πŸ“–mathematicalβ€”map
RingHom.id
β€”SetLike.coe_injective
Set.image_id
map_inf πŸ“–mathematicalDFunLike.coe
RingHom
RingHom.instFunLike
map
Subsemiring
instMin
β€”SetLike.coe_injective
Set.image_inter
map_le_iff_le_comap πŸ“–mathematicalβ€”Subsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
comap
β€”Set.image_subset_iff
map_map πŸ“–mathematicalβ€”map
RingHom.comp
β€”SetLike.coe_injective
Set.image_image
map_sup πŸ“–mathematicalβ€”map
Subsemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
β€”GaloisConnection.l_sup
gc_map_comap
map_toSubmonoid πŸ“–mathematicalβ€”toSubmonoid
map
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
Set.image
DFunLike.coe
RingHom
RingHom.instFunLike
SetLike.coe
Subsemiring
instSetLike
β€”β€”
mem_bot πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
Bot.bot
instBot
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”RingHom.mem_rangeS
mem_center_iff πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
center
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”Subsemigroup.mem_center_iff
mem_centralizer_iff πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
centralizer
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”
mem_closure πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
closure
β€”mem_sInf
mem_closure_iff πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
closure
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
AddSubmonoid.closure
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
Submonoid.closure
β€”Set.ext_iff
coe_closure_eq
mem_closure_iff_exists_list πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Distrib.toMul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”AddSubmonoid.closure_induction
Submonoid.closure_induction
Semigroup.to_isLawfulIdentity
Semigroup.to_isAssociative
AddSemigroup.to_isLawfulIdentity
AddSemigroup.to_isAssociative
mem_closure_iff
list_sum_mem
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
list_prod_mem
subset_closure
mem_closure_of_mem πŸ“–mathematicalSet
Set.instMembership
Subsemiring
SetLike.instMembership
instSetLike
closure
β€”subset_closure
mem_comap πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
comap
DFunLike.coe
RingHom
RingHom.instFunLike
β€”β€”
mem_iInf πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
iInf
instInfSet
β€”β€”
mem_iSup_of_directed πŸ“–mathematicalDirected
Subsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
β€”Submonoid.coe_iSup_of_directed
AddSubmonoid.coe_iSup_of_directed
iSup_le
Set.mem_iUnion
le_iSup
mem_map πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
map
DFunLike.coe
RingHom
RingHom.instFunLike
β€”β€”
mem_map_equiv πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
map
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
DFunLike.coe
RingEquiv.symm
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Set.mem_image_equiv
mem_prod πŸ“–mathematicalβ€”Subsemiring
Prod.instNonAssocSemiring
SetLike.instMembership
instSetLike
prod
β€”β€”
mem_sInf πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
InfSet.sInf
instInfSet
β€”Set.mem_iInterβ‚‚
mem_sSup_of_directedOn πŸ“–mathematicalSet.Nonempty
Subsemiring
DirectedOn
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
Set
Set.instMembership
β€”sSup_eq_iSup'
mem_iSup_of_directed
Set.Nonempty.to_subtype
DirectedOn.directed_val
multiset_prod_mem πŸ“–mathematicalSubsemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
Multiset.prod
CommSemiring.toCommMonoid
β€”multiset_prod_mem
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
multiset_sum_mem πŸ“–mathematicalSubsemiring
SetLike.instMembership
instSetLike
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”multiset_sum_mem
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
notMem_of_notMem_closure πŸ“–mathematicalSubsemiring
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
β€”subset_closure
prod_bot_sup_bot_prod πŸ“–mathematicalβ€”Subsemiring
Prod.instNonAssocSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
prod
Bot.bot
instBot
β€”le_antisymm
sup_le
prod_mono_right
bot_le
prod_mono_left
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
le_sup_left
SetLike.mem_coe
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
le_sup_right
Prod.fst_mul_snd
prod_mem πŸ“–mathematicalSubsemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
Finset.prod
CommSemiring.toCommMonoid
β€”prod_mem
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
prod_mono πŸ“–mathematicalSubsemiring
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Prod.instNonAssocSemiring
prod
β€”Set.prod_mono
prod_mono_left πŸ“–mathematicalβ€”Monotone
Subsemiring
Prod.instNonAssocSemiring
PartialOrder.toPreorder
instPartialOrder
prod
β€”prod_mono
le_refl
prod_mono_right πŸ“–mathematicalβ€”Monotone
Subsemiring
Prod.instNonAssocSemiring
PartialOrder.toPreorder
instPartialOrder
prod
β€”prod_mono
le_refl
prod_top πŸ“–mathematicalβ€”prod
Top.top
Subsemiring
instTop
comap
Prod.instNonAssocSemiring
RingHom.fst
β€”ext
rangeS_subtype πŸ“–mathematicalβ€”RingHom.rangeS
Subsemiring
SetLike.instMembership
instSetLike
toNonAssocSemiring
subtype
β€”SetLike.coe_injective
RingHom.coe_rangeS
Subtype.range_coe
range_fst πŸ“–mathematicalβ€”RingHom.rangeS
Prod.instNonAssocSemiring
RingHom.fst
Top.top
Subsemiring
instTop
β€”RingHom.rangeS_top_of_surjective
Prod.fst_surjective
Zero.instNonempty
range_snd πŸ“–mathematicalβ€”RingHom.rangeS
Prod.instNonAssocSemiring
RingHom.snd
Top.top
Subsemiring
instTop
β€”RingHom.rangeS_top_of_surjective
Prod.snd_surjective
Zero.instNonempty
sInf_toAddSubmonoid πŸ“–mathematicalβ€”toAddSubmonoid
InfSet.sInf
Subsemiring
instInfSet
iInf
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instInfSet
Set
Set.instMembership
β€”mk'_toAddSubmonoid
sInf_toSubmonoid πŸ“–mathematicalβ€”toSubmonoid
InfSet.sInf
Subsemiring
instInfSet
iInf
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instInfSet
Set
Set.instMembership
β€”mk'_toSubmonoid
smulCommClass_left πŸ“–mathematicalβ€”SMulCommClass
Subsemiring
SetLike.instMembership
instSetLike
smul
β€”Submonoid.instSMulCommClassSubtypeMem
smulCommClass_right πŸ“–mathematicalβ€”SMulCommClass
Subsemiring
SetLike.instMembership
instSetLike
smul
β€”Submonoid.instSMulCommClassSubtypeMem_1
smul_def πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
smul
β€”β€”
subset_closure πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
Subsemiring
instSetLike
closure
β€”mem_closure
sum_mem πŸ“–mathematicalSubsemiring
SetLike.instMembership
instSetLike
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”sum_mem
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
toAddSubmonoid_mono πŸ“–mathematicalβ€”Monotone
Subsemiring
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
PartialOrder.toPreorder
instPartialOrder
AddSubmonoid.instPartialOrder
toAddSubmonoid
β€”StrictMono.monotone
toAddSubmonoid_strictMono
toAddSubmonoid_strictMono πŸ“–mathematicalβ€”StrictMono
Subsemiring
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
PartialOrder.toPreorder
instPartialOrder
AddSubmonoid.instPartialOrder
toAddSubmonoid
β€”β€”
toSubmonoid_mono πŸ“–mathematicalβ€”Monotone
Subsemiring
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
PartialOrder.toPreorder
instPartialOrder
Submonoid.instPartialOrder
toSubmonoid
β€”StrictMono.monotone
toSubmonoid_strictMono
toSubmonoid_strictMono πŸ“–mathematicalβ€”StrictMono
Subsemiring
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
PartialOrder.toPreorder
instPartialOrder
Submonoid.instPartialOrder
toSubmonoid
β€”β€”
topEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Subsemiring
SetLike.instMembership
instSetLike
Top.top
instTop
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
topEquiv
β€”β€”
topEquiv_symm_apply_coe πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
Top.top
instTop
DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
toNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
topEquiv
β€”β€”
top_prod πŸ“–mathematicalβ€”prod
Top.top
Subsemiring
instTop
comap
Prod.instNonAssocSemiring
RingHom.snd
β€”ext
top_prod_top πŸ“–mathematicalβ€”prod
Top.top
Subsemiring
instTop
Prod.instNonAssocSemiring
β€”top_prod
comap_top

Subsemiring.center

Definitions

NameCategoryTheorems
commSemiring πŸ“–CompOpβ€”
commSemiring' πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
smulCommClass_left πŸ“–mathematicalβ€”SMulCommClass
Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Subsemiring.instSetLike
Subsemiring.center
Subsemiring.smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”Submonoid.center.smulCommClass_left
smulCommClass_right πŸ“–mathematicalβ€”SMulCommClass
Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Subsemiring.instSetLike
Subsemiring.center
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
instDistribSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
Subsemiring.smul
β€”Submonoid.center.smulCommClass_right

SubsemiringClass

Theorems

NameKindAssumesProvesValidatesDepends On
instCharZero πŸ“–mathematicalβ€”CharZero
SetLike.instMembership
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
toNonAssocSemiring
β€”Function.Injective.of_comp
Nat.cast_injective

---

← Back to Index