Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Algebra/Ring/Subsemiring/Defs.lean

Statistics

MetricCount
DefinitionsAddSubmonoidWithOneClass, toAddMonoidWithOne, toSubsemiring, domRestrict, eqLocusS, copy, instMin, instPartialOrder, instSetLike, instTop, mk', ofClass, subtype, toAddSubmonoid, toCommSemiring, toNonAssocSemiring, toNonUnitalSubsemiring, toSemiring, toSubmonoid, SubsemiringClass, subtype, toCommSemiring, toNonAssocSemiring, toSemiring
24
TheoremstoAddSubmonoidClass, toOneMemClass, toSubsemiring_toNonUnitalSubsemiring, eqLocusS_same, mem_eqLocusS, restrict_apply, add_mem, add_mem', coe_add, coe_carrier_toSubmonoid, coe_copy, coe_inf, coe_mk', coe_mul, coe_ofClass, coe_one, coe_pow, coe_set_mk, coe_subtype, coe_toAddSubmonoid, coe_toNonUnitalSubsemiring, coe_toSubmonoid, coe_top, coe_zero, copy_eq, copy_toSubmonoid, ext, ext_iff, instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMul, instSubsemiringClass, mem_carrier, mem_inf, mem_mk, mem_mk', mem_toAddSubmonoid, mem_toNonUnitalSubsemiring, mem_toSubmonoid, mem_top, mk'_toAddSubmonoid, mk'_toSubmonoid, mul_mem, noZeroDivisors, nontrivial, nsmul_mem, one_mem, one_mem_toNonUnitalSubsemiring, pow_mem, subtype_apply, subtype_injective, toAddSubmonoid_injective, toNonUnitalSubsemiring_inj, toNonUnitalSubsemiring_injective, toNonUnitalSubsemiring_toSubsemiring, toSubmonoid_injective, zero_mem, zero_mem', addSubmonoidWithOneClass, coe_subtype, noZeroDivisors, nonUnitalSubsemiringClass, nontrivial, subtype_apply, subtype_injective, toAddSubmonoidClass, toSubmonoidClass, natCast_mem, ofNat_mem
67
Total91

AddSubmonoidWithOneClass

Definitions

NameCategoryTheorems
toAddMonoidWithOne πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
toAddSubmonoidClass πŸ“–mathematicalβ€”AddSubmonoidClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
β€”β€”
toOneMemClass πŸ“–mathematicalβ€”OneMemClass
AddMonoidWithOne.toOne
β€”β€”

NonUnitalSubsemiring

Definitions

NameCategoryTheorems
toSubsemiring πŸ“–CompOp
2 mathmath: Subsemiring.toNonUnitalSubsemiring_toSubsemiring, toSubsemiring_toNonUnitalSubsemiring

Theorems

NameKindAssumesProvesValidatesDepends On
toSubsemiring_toNonUnitalSubsemiring πŸ“–mathematicalNonUnitalSubsemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Subsemiring.toNonUnitalSubsemiring
toSubsemiring
β€”β€”

RingHom

Definitions

NameCategoryTheorems
domRestrict πŸ“–CompOp
1 mathmath: restrict_apply
eqLocusS πŸ“–CompOp
2 mathmath: mem_eqLocusS, eqLocusS_same

Theorems

NameKindAssumesProvesValidatesDepends On
eqLocusS_same πŸ“–mathematicalβ€”eqLocusS
Top.top
Subsemiring
Subsemiring.instTop
β€”SetLike.ext
mem_eqLocusS πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
Subsemiring.instSetLike
eqLocusS
DFunLike.coe
RingHom
instFunLike
β€”β€”
restrict_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
SetLike.instMembership
SubsemiringClass.toNonAssocSemiring
instFunLike
domRestrict
β€”β€”

Subsemiring

Definitions

NameCategoryTheorems
copy πŸ“–CompOp
3 mathmath: copy_eq, coe_copy, copy_toSubmonoid
instMin πŸ“–CompOp
8 mathmath: mem_inf, map_comap_eq, map_inf, op_inf, comap_inf, coe_inf, unop_inf, Algebra.inf_toSubsemiring
instPartialOrder πŸ“–CompOp
43 mathmath: closure_le, centralizer_le, closure_mono, RingPreordering.toSubsemiring_strictMono, gc_map_comap, RingPreordering.toSubsemiring_lt_toSubsemiring, op_le_op_iff, homogeneousCore_mono, le_op_iff, Subring.toSubsemiring_mono, Subring.toSubsemiring_lt_toSubsemiring, unop_le_unop_iff, StarSubsemiring.toSubsemiring_le_iff, prod_mono_right, opEquiv_apply, RingPreordering.toSubsemiring_mono, Subring.toSubsemiring_le_toSubsemiring, toSubmonoid_mono, closure_le_centralizer_centralizer, op_le_iff, RingPreordering.toSubsemiring_le_toSubsemiring, pointwise_smul_subset_iff, toSubmonoid_strictMono, opEquiv_symm_apply, Subring.toSubsemiring_strictMono, RingHom.sclosure_preimage_le, StarSubalgebra.rangeS_le, pointwise_smul_le_pointwise_smul_iff, toSubsemiring_homogeneousCore_le, instCovariantClassHSMulLe, Subring.mk_le_mk, toAddSubmonoid_mono, prod_mono_left, subset_pointwise_smul_iff, le_topologicalClosure, map_le_iff_le_comap, toAddSubmonoid_strictMono, pointwise_smul_le_pointwise_smul_iffβ‚€, le_centralizer_centralizer, pointwise_smul_le_iffβ‚€, Subalgebra.rangeS_le, le_pointwise_smul_iffβ‚€, center_le_centralizer
instSetLike πŸ“–CompOp
197 mathmath: RingCone.coe_set_mk, mem_sumSq, mem_toNonUnitalSubsemiring, mem_sSup_of_directedOn, mem_top, coe_subtype, Polynomial.mem_lifts_iff_mem_alg, closure_le, eq_top_iff', isClosed_topologicalClosure, RingPreordering.mem_mk, coe_pow, mem_carrier, mem_iInf, Polynomial.monomial_mem_lifts, CentroidHom.star_centerToCentroidCenter, mem_closure, Polynomial.X_mem_lifts, toIsOrderedRing, mem_smul_pointwise_iff_exists, StarSubsemiring.mem_toSubsemiring, smul_mem_pointwise_smul_iff, Subring.coe_toSubsemiring, mem_bot, nontrivial, Submonoid.subsemiringClosure_coe, RingHom.rangeSRestrict_surjective, centerCongr_symm_apply_coe, IsScalarTower.subsemiring, mem_subalgebraOfSubsemiring, Polynomial.Splits.mem_lift_of_roots_mem_range, coe_prod, RingEquiv.ofLeftInverseS_symm_apply, addEquivOp_apply_coe, isScalarTower, Subring.mopRingEquivOp_apply_coe, RingCon.comapQuotientEquivRangeS_symm_mk, RingHom.coe_rangeSRestrict, mem_iSup_of_directed, smul_def, coe_iSup_of_directed, coe_equivMapOfInjective_apply, Subalgebra.mopAlgEquivOp_symm_apply, coe_sInf, toIsStrictOrderedRing, coe_add, coe_one, isArtinianRing_rangeS, Subring.mem_toSubsemiring, Polynomial.C_mem_lifts, mem_inf, RingCone.mem_mk, mem_mk', coe_toSubmonoid, subset_closure, centerCongr_apply_coe, one_mem, StarSubsemiring.coe_toSubsemiring, closure_le_centralizer_centralizer, Polynomial.mem_lifts, noZeroDivisors, Subalgebra.linearEquivOp_apply_coe, mem_map_equiv, Polynomial.lifts_iff_ringHom_rangeS, Subring.topEquiv_apply, RingEquiv.subsemiringMap_apply_coe, mem_op, Subring.coe_set_mk, HomogeneousSubsemiring.mem_iff, Subring.mopRingEquivOp_symm_apply, centerToMulOpposite_symm_apply_coe, IsHomogeneous.subsemiringClosure, addEquivOp_symm_apply_coe, coe_carrier_toSubmonoid, Polynomial.C'_mem_lifts, smul_mem_pointwise_smul_iffβ‚€, mem_centralizer_iff, centerToMulOpposite_apply_coe, isHomogeneous_iff_subset_iInter, RingPreordering.coe_toSubsemiring, RingEquiv.subsemiringMap_symm_apply_coe, RingCon.comapQuotientEquivRangeS_mk, Subring.topEquiv_symm_apply_coe, ext_iff, center.smulCommClass_right, RingCon.coe_quotientKerEquivRangeS_mk, rangeS_subtype, comap_toSubmonoid, coe_sumSq, mem_inv_pointwise_smul_iffβ‚€, RingHom.mem_rangeS, Subalgebra.mem_mk, closure_eq, mem_comap, StarSubsemiring.coe_mk, inclusion_injective, Subalgebra.coe_toSubsemiring, CharP.subsemiring, mopRingEquivOp_apply_coe, IsLocalization.scaleRoots_commonDenom_mem_lifts, zero_mem, instSMulCommClassSubtypeMemCenter_1, coe_inf, instSubsemiringClass, coe_toNonUnitalSubsemiring, isHomogeneous_iff_forall_subset, coe_top, Subalgebra.coe_valA, RingHom.mem_rangeS_self, smulCommClass_left, Subalgebra.algEquivOpMop_apply, Polynomial.lifts_iff_coeff_lifts, mem_toSubmonoid, coe_centralizer, coe_pointwise_smul, Subring.ringEquivOpMop_symm_apply_coe, Subalgebra.mem_toSubsemiring, mem_closure_iff_exists_list, mem_toAddSubmonoid, map_toSubmonoid, isNoetherianRing_rangeS, RingPreordering.mem_toSubsemiring, topologicalSemiring, Algebra.algebraMap_ofSubsemiring, ringEquivOpMop_symm_apply_coe, instSMulCommClassSubtypeMemCenter, Polynomial.X_pow_mem_lifts, coe_closure_eq, topologicalClosure_coe, mem_pointwise_smul_iff_inv_smul_mem, mem_map, NonUnitalNonAssocSemiring.mem_center_iff, HomogeneousSubsemiring.is_homogeneous', coe_ofClass, coe_sSup_of_directedOn, coe_matrix, Polynomial.lifts_iff_liftsRing, mem_mk, topEquiv_symm_apply_coe, coe_op, coe_zero, coe_set_mk, centralizer_eq_top_iff_subset, CentroidHom.centerToCentroidCenter_apply, coe_mk', Subalgebra.linearEquivOp_symm_apply_coe, Subring.mem_mk, ringEquivOpMop_apply, subtype_apply, RingEquiv.ofLeftInverseS_apply, Submonoid.subsemiringClosure_mem, continuousSMul, subtype_injective, coe_toAddSubmonoid, Polynomial.lifts_iff_set_range, Subalgebra.mem_perfectClosure_iff, smulCommClass_right, le_centralizer_centralizer, mopRingEquivOp_symm_apply, coe_iInf, coe_center, Algebra.IsInvariant.charpoly_mem_lifts, topEquiv_apply, coe_map, Module.End.mem_subsemiringCenter_iff, mem_closure_of_mem, instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMul, RingHom.mem_eqLocusS, coe_mul, mem_center_iff, Subalgebra.mopAlgEquivOp_apply_coe, Subalgebra.coe_mk, faithfulSMul, RingHom.eqOn_sclosure, Subalgebra.algEquivOpMop_symm_apply_coe, Subring.ringEquivOpMop_apply, mem_pointwise_smul_iff_inv_smul_memβ‚€, mem_prod, mem_nonneg, mem_unop, IsHomogeneous.subsemiringClosure_of_isHomogeneousElem, Polynomial.mem_lift_of_splits_of_roots_mem_range, integralClosure.mem_lifts_of_monic_of_dvd_map, Polynomial.lifts_iff_coeffs_subset_range, mem_closure_iff, Polynomial.mem_map_rangeS, Subalgebra.coe_valA', mem_inv_pointwise_smul_iff, coe_nonneg, RingHom.coe_rangeS, coe_unop, mem_sInf, coe_comap, RingHom.ker_rangeSRestrict, coe_bot, RingPreordering.coe_set_mk, center.smulCommClass_left
instTop πŸ“–CompOp
33 mathmath: Subring.range_snd, mem_top, eq_top_iff', RingHom.rangeS_eq_top, op_eq_top, Algebra.toSubsemiring_eq_top, center_eq_top, RingHom.rangeS_toSubmonoid, prod_top, unop_eq_top, Subring.toSubsemiring_top, Subring.topEquiv_apply, top_prod_top, comap_top, Subring.topEquiv_symm_apply_coe, RingHom.rangeS_eq_map, range_fst, RingHom.rangeS_top_iff_surjective, Algebra.top_toSubsemiring, RingHom.rangeS_top_of_surjective, coe_top, unop_top, range_snd, closure_univ, topEquiv_symm_apply_coe, centralizer_eq_top_iff_subset, RingCon.rangeS_mk', Subring.range_fst, top_prod, op_top, topEquiv_apply, Subring.toSubsemiring_eq_top, RingHom.eqLocusS_same
mk' πŸ“–CompOp
4 mathmath: mem_mk', mk'_toAddSubmonoid, coe_mk', mk'_toSubmonoid
ofClass πŸ“–CompOp
2 mathmath: RingHom.surjective_codRestrict, coe_ofClass
subtype πŸ“–CompOp
8 mathmath: coe_subtype, rangeS_subtype, Subalgebra.coe_valA, Algebra.algebraMap_ofSubsemiring, subtype_apply, subtype_injective, Subalgebra.toSubsemiring_subtype, Subalgebra.coe_valA'
toAddSubmonoid πŸ“–CompOp
15 mathmath: Submonoid.subsemiringClosure_toAddSubmonoid, pointwise_smul_toAddSubmonoid, Subring.coe_matrix, sInf_toAddSubmonoid, mk'_toAddSubmonoid, Subalgebra.coe_matrix, AlgEquiv.subalgebraMap_apply_coe, mem_toAddSubmonoid, toAddSubmonoid_mono, coe_matrix, toAddSubmonoid_injective, nonneg_toAddSubmonoid, toAddSubmonoid_strictMono, coe_toAddSubmonoid, AlgEquiv.subalgebraMap_symm_apply_coe
toCommSemiring πŸ“–CompOp
1 mathmath: Algebra.algebraMap_ofSubsemiring
toNonAssocSemiring πŸ“–CompOp
41 mathmath: coe_subtype, CentroidHom.star_centerToCentroidCenter, RingHom.rangeSRestrict_surjective, centerCongr_symm_apply_coe, RingEquiv.ofLeftInverseS_symm_apply, addEquivOp_apply_coe, RingCon.comapQuotientEquivRangeS_symm_mk, RingHom.coe_rangeSRestrict, coe_equivMapOfInjective_apply, Subalgebra.mopAlgEquivOp_symm_apply, coe_add, centerCongr_apply_coe, noZeroDivisors, RingEquiv.subsemiringMap_apply_coe, Subring.mopRingEquivOp_symm_apply, centerToMulOpposite_symm_apply_coe, addEquivOp_symm_apply_coe, centerToMulOpposite_apply_coe, RingEquiv.subsemiringMap_symm_apply_coe, RingCon.comapQuotientEquivRangeS_mk, RingCon.coe_quotientKerEquivRangeS_mk, rangeS_subtype, inclusion_injective, CharP.subsemiring, mopRingEquivOp_apply_coe, Subalgebra.coe_valA, Subalgebra.algEquivOpMop_apply, topologicalSemiring, ringEquivOpMop_symm_apply_coe, topEquiv_symm_apply_coe, CentroidHom.centerToCentroidCenter_apply, ringEquivOpMop_apply, subtype_apply, RingEquiv.ofLeftInverseS_apply, subtype_injective, mopRingEquivOp_symm_apply, topEquiv_apply, coe_mul, Subring.ringEquivOpMop_apply, Subalgebra.coe_valA', RingHom.ker_rangeSRestrict
toNonUnitalSubsemiring πŸ“–CompOp
9 mathmath: mem_toNonUnitalSubsemiring, sumSq_toNonUnitalSubsemiring, toNonUnitalSubsemiring_toSubsemiring, coe_toNonUnitalSubsemiring, toNonUnitalSubsemiring_injective, one_mem_toNonUnitalSubsemiring, toNonUnitalSubsemiring_inj, NonUnitalSubsemiring.toSubsemiring_toNonUnitalSubsemiring, Submonoid.subsemiringClosure_toNonUnitalSubsemiring
toSemiring πŸ“–CompOp
6 mathmath: toIsOrderedRing, toIsStrictOrderedRing, isArtinianRing_rangeS, Subalgebra.coe_valA, isNoetherianRing_rangeS, RingHom.ker_rangeSRestrict
toSubmonoid πŸ“–CompOp
57 mathmath: RingPreordering.ext_iff, mem_carrier, Subalgebra.coe_toAddSubmonoid, Subring.addEquivOp_apply_coe, IntermediateField.mem_carrier, StarSubalgebra.toNonUnitalStarSubalgebra_toStarSubalgebra, addEquivOp_apply_coe, Subring.toSubmonoid_mono, RingHom.rangeS_toSubmonoid, Subring.mopRingEquivOp_apply_coe, Subring.mk'_toSubmonoid, coe_toSubmonoid, VonNeumannAlgebra.centralizer_centralizer', toSubmonoid_mono, StarSubsemiring.mem_carrier, Subalgebra.linearEquivOp_apply_coe, Subalgebra.mem_carrier, ValuationSubring.mem_carrier, addEquivOp_symm_apply_coe, coe_carrier_toSubmonoid, center_toSubmonoid, Subalgebra.algebraMap_mem', toSubmonoid_strictMono, comap_toSubmonoid, RingPreordering.neg_one_notMem', Subfield.coe_inf, mopRingEquivOp_apply_coe, StarSubalgebra.mem_carrier, centralizer_toSubmonoid, mem_toSubmonoid, ValuationSubring.mem_or_inv_mem', Subring.mem_carrier, Subring.toSubmonoid_strictMono, Subring.ringEquivOpMop_symm_apply_coe, map_toSubmonoid, Subring.coe_toSubmonoid, ringEquivOpMop_symm_apply_coe, RingPreordering.mem_of_isSquare', Subfield.mem_toSubmonoid, op_toSubmonoid, zero_mem', Subalgebra.linearEquivOp_symm_apply_coe, Subring.sInf_toSubmonoid, copy_toSubmonoid, sInf_toSubmonoid, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, Subring.mem_toSubmonoid, toSubmonoid_injective, mk'_toSubmonoid, Subalgebra.mopAlgEquivOp_apply_coe, Subalgebra.algEquivOpMop_symm_apply_coe, unop_toSubmonoid, Subfield.mem_carrier, Subfield.coe_toSubmonoid, Subring.addEquivOp_symm_apply_coe, Subring.toSubmonoid_injective, Subring.centralizer_toSubmonoid

Theorems

NameKindAssumesProvesValidatesDepends On
add_mem πŸ“–mathematicalSubsemiring
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
add_mem' πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.toSubsemigroup
toSubmonoid
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
coe_add πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
toNonAssocSemiring
β€”β€”
coe_carrier_toSubmonoid πŸ“–mathematicalβ€”Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.toSubsemigroup
toSubmonoid
SetLike.coe
Subsemiring
instSetLike
β€”β€”
coe_copy πŸ“–mathematicalSetLike.coe
Subsemiring
instSetLike
copyβ€”β€”
coe_inf πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_mk' πŸ“–mathematicalSetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
Subsemiring
instSetLike
mk'
β€”β€”
coe_mul πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
toNonAssocSemiring
β€”β€”
coe_ofClass πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
ofClass
β€”β€”
coe_one πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
OneMemClass.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
β€”AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
coe_pow πŸ“–mathematicalβ€”Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
SubmonoidClass.nPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
Monoid.toNatPow
β€”SubsemiringClass.toSubmonoidClass
instSubsemiringClass
coe_set_mk πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.toSubsemigroup
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddZero.toZero
SetLike.coe
Subsemiring
instSetLike
Submonoid
Submonoid.instSetLike
β€”β€”
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Subsemiring
SetLike.instMembership
instSetLike
toNonAssocSemiring
RingHom.instFunLike
subtype
β€”β€”
coe_toAddSubmonoid πŸ“–mathematicalβ€”SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
toAddSubmonoid
Subsemiring
instSetLike
β€”β€”
coe_toNonUnitalSubsemiring πŸ“–mathematicalβ€”SetLike.coe
NonUnitalSubsemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
NonUnitalSubsemiring.instSetLike
toNonUnitalSubsemiring
Subsemiring
instSetLike
β€”β€”
coe_toSubmonoid πŸ“–mathematicalβ€”SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
toSubmonoid
Subsemiring
instSetLike
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
Subsemiring
instSetLike
Top.top
instTop
Set.univ
β€”β€”
coe_zero πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
β€”AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
copy_eq πŸ“–mathematicalSetLike.coe
Subsemiring
instSetLike
copyβ€”SetLike.coe_injective
copy_toSubmonoid πŸ“–mathematicalSetLike.coe
Subsemiring
instSetLike
toSubmonoid
copy
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
MulOne.toMul
MulOneClass.toMulOne
β€”β€”
ext πŸ“–β€”Subsemiring
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
β€”ext
instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMul πŸ“–mathematicalβ€”CanLift
Set
Subsemiring
SetLike.coe
instSetLike
Set.instMembership
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
instSubsemiringClass πŸ“–mathematicalβ€”SubsemiringClass
Subsemiring
instSetLike
β€”Subsemigroup.mul_mem'
Submonoid.one_mem'
AddSubsemigroup.add_mem'
zero_mem'
mem_carrier πŸ“–mathematicalβ€”Set
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.toSubsemigroup
toSubmonoid
Subsemiring
SetLike.instMembership
instSetLike
β€”β€”
mem_inf πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
instMin
β€”β€”
mem_mk πŸ“–mathematicalSet
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.toSubsemigroup
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddZero.toZero
Subsemiring
SetLike.instMembership
instSetLike
Submonoid
Submonoid.instSetLike
β€”β€”
mem_mk' πŸ“–mathematicalSetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
Subsemiring
SetLike.instMembership
instSetLike
mk'
Set
Set.instMembership
β€”β€”
mem_toAddSubmonoid πŸ“–mathematicalβ€”AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SetLike.instMembership
AddSubmonoid.instSetLike
toAddSubmonoid
Subsemiring
instSetLike
β€”β€”
mem_toNonUnitalSubsemiring πŸ“–mathematicalβ€”NonUnitalSubsemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
toNonUnitalSubsemiring
Subsemiring
instSetLike
β€”β€”
mem_toSubmonoid πŸ“–mathematicalβ€”Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
toSubmonoid
Subsemiring
instSetLike
β€”β€”
mem_top πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
Top.top
instTop
β€”Set.mem_univ
mk'_toAddSubmonoid πŸ“–mathematicalSetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
toAddSubmonoid
mk'
β€”SetLike.coe_injective
mk'_toSubmonoid πŸ“–mathematicalSetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.instSetLike
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddSubmonoid.instSetLike
toSubmonoid
mk'
β€”SetLike.coe_injective
mul_mem πŸ“–mathematicalSubsemiring
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
noZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
Subsemiring
SetLike.instMembership
instSetLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
toNonAssocSemiring
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
β€”AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero
nontrivial πŸ“–mathematicalβ€”Nontrivial
Subsemiring
SetLike.instMembership
instSetLike
β€”nontrivial_of_ne
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
zero_ne_one
NeZero.one
nsmul_mem πŸ“–mathematicalSubsemiring
SetLike.instMembership
instSetLike
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”nsmul_mem
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
one_mem πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
instSubsemiringClass
one_mem_toNonUnitalSubsemiring πŸ“–mathematicalβ€”NonUnitalSubsemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
SetLike.instMembership
NonUnitalSubsemiring.instSetLike
toNonUnitalSubsemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Submonoid.one_mem
pow_mem πŸ“–mathematicalSubsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
instSetLike
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”pow_mem
SubsemiringClass.toSubmonoidClass
instSubsemiringClass
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Subsemiring
SetLike.instMembership
instSetLike
toNonAssocSemiring
RingHom.instFunLike
subtype
β€”β€”
subtype_injective πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
DFunLike.coe
RingHom
toNonAssocSemiring
RingHom.instFunLike
subtype
β€”Subtype.coe_injective
toAddSubmonoid_injective πŸ“–mathematicalβ€”Subsemiring
AddSubmonoid
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
toAddSubmonoid
β€”ext
SetLike.ext_iff
toNonUnitalSubsemiring_inj πŸ“–mathematicalβ€”toNonUnitalSubsemiringβ€”toNonUnitalSubsemiring_injective
toNonUnitalSubsemiring_injective πŸ“–mathematicalβ€”Subsemiring
NonUnitalSubsemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
toNonUnitalSubsemiring
β€”SetLike.ext'_iff
toNonUnitalSubsemiring_toSubsemiring πŸ“–mathematicalβ€”NonUnitalSubsemiring.toSubsemiring
toNonUnitalSubsemiring
one_mem
β€”one_mem
toSubmonoid_injective πŸ“–mathematicalβ€”Subsemiring
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
toSubmonoid
β€”ext
SetLike.ext_iff
zero_mem πŸ“–mathematicalβ€”Subsemiring
SetLike.instMembership
instSetLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
instSubsemiringClass
zero_mem' πŸ“–mathematicalβ€”Set
Set.instMembership
Subsemigroup.carrier
MulOne.toMul
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Submonoid.toSubsemigroup
toSubmonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”

SubsemiringClass

Definitions

NameCategoryTheorems
subtype πŸ“–CompOp
5 mathmath: RingHom.comp_restrict, RingHom.rangeS_codRestrict, subtype_injective, coe_subtype, subtype_apply
toCommSemiring πŸ“–CompOp
155 mathmath: LocalSubring.isLocalRing, ValuationSubring.coe_mem_principalUnitGroup_iff, ValuationSubring.valuation_lt_one_iff, ValuationSubring.image_maximalIdeal, ValuationSubring.integralClosure_algebraMap_injective, Valuation.mem_maximalIdeal_iff, IntermediateField.algHomEquivAlgHomOfSplits_apply_apply, NumberField.IsCMField.zpowers_complexConj_eq_top, IntermediateField.coe_algebraMap_over_bot, Algebra.algebraMap_ofSubsemiring_apply, NumberField.IsCMField.equivInfinitePlace_symm_apply, IsDedekindDomain.HeightOneSpectrum.instFaithfulSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, Valuation.HasExtension.instIsLocalHomSubtypeMemValuationSubringValuationSubringRingHomAlgebraMap, NumberField.CMExtension.algebraMap_equivMaximalRealSubfield_symm_apply, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_symm_apply, Polynomial.int_coeff_eq, Algebra.coe_algebraMap_ofSubring, ValuationSubring.ofPrime_valuation_eq_one_iff_mem_primeCompl, ValuationSubring.valuation_unit, Subfield.relfinrank_eq_finrank_of_le, isLocalRing_top, Algebra.toSubring_bot, IntermediateField.LinearDisjoint.algebraMap_basisOfBasisRight_repr_apply, ValuationSubring.subtype_injective, IsDedekindDomain.HeightOneSpectrum.adicCompletion.instIsScalarTower', Algebra.coe_algebraMap_ofSubsemiring, IntermediateField.LinearDisjoint.trace_algebraMap, NumberField.IsCMField.isQuadraticExtension, Valuation.leIdeal_map_algebraMap_eq_leSubmodule_min, NumberField.IsCMField.orderOf_complexConj, ValuationSubring.isLocalRing, IntermediateField.restrictRestrictAlgEquivMapHom_apply, ValuationSubring.idealOfLE_le_of_le, IsDedekindDomain.HeightOneSpectrum.algebraMap_adicCompletionIntegers_apply, IsDedekindDomain.HeightOneSpectrum.coe_smul_adicCompletionIntegers, normalClosure.restrictScalars_eq, Ideal.image_subset_nonunits_valuationSubring, IntermediateField.LinearDisjoint.basisOfBasisLeft_apply, algebraicClosure.isIntegralClosure, is_noetherian_subring_closure, NumberField.IsCMField.complexConj_apply_apply, Valuation.HasExtension.maximalIdeal_comap_algebraMap_eq_maximalIdeal, IntermediateField.LinearDisjoint.basisOfBasisRight_apply, PadicInt.coe_adicCompletionIntegersEquiv_symm_apply, NumberField.IsCMField.coe_ringOfIntegersComplexConj, ValuationSubring.primeSpectrumOrderEquiv_apply_coe_carrier, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, IntermediateField.botContinuousSMul, NumberField.IsCMField.equivInfinitePlace_apply, LocalSubring.instAtPrimeSubtypeMemSubringToSubringOfPrime, ValuationSubring.coe_unitGroupMulEquiv_apply, NumberField.IsCMField.is_quadratic, Valuation.pow_Uniformizer_is_pow_generator, NumberField.IsCMField.complexConj_apply_eq_self, IntermediateField.instIsScalarTowerSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap, Subfield.algebraMap_ofSubfield, Valuation.ideal_isPrincipal, ValuationSubring.instIsScalarTowerSubtypeMemValuationSubringWithZeroMultiplicativeInt, Valuation.associated_of_isUniformizer, Submodule.traceDual_le_span_map_traceDual, IsDedekindDomain.HeightOneSpectrum.instIsTorsionFreeSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, LocalSubring.map_maximalIdeal_eq_top_of_isMax, NumberField.IsCMField.complexEmbedding_complexConj, PadicInt.coe_adicCompletionIntegersEquiv_apply, Polynomial.int_evalβ‚‚_eq, ValuationSubring.instIsDomainSubtypeMem, IntermediateField.algebraMap_apply, IntermediateField.LinearDisjoint.norm_algebraMap, ValuationSubring.instIsFractionRingSubtypeMem, Valuation.HasExtension.instIsScalarTower_valuationSubring', Valuation.HasExtension.val_algebraMap, ValuationSubring.algebraMap_apply, ValuationSubring.valuation_eq_iff, Valuation.valuationSubring_isPrincipalIdealRing, IsLocalRing.exists_factor_valuationRing, Algebra.algebraMap_ofSubring, Valuation.HasExtension.instIsLocalHomValuationInteger, Valued.integer.coe_span_singleton_eq_closedBall, Polynomial.int_leadingCoeff_eq, Polynomial.map_restriction, ValuationSubring.coe_mem_nonunits_iff, ValuationSubring.mem_nonunits_iff_exists_mem_maximalIdeal, IntermediateField.AdjoinPair.algebraMap_gen₁, FixedPoints.toAlgAut_surjective, Polynomial.int_monic_iff, Valuation.HasExtension.instIsTorsionFreeInteger, Rat.HeightOneSpectrum.adicCompletionIntegers.coe_padicIntEquiv_apply, Valued.integer.norm_unit, ValuationSubring.prime_idealOfLE, minpoly.ofSubring, ValuationSubring.ofPrime_scalar_tower, IsGaloisGroup.intermediateField, ValuationSubring.principalUnitGroupEquiv_apply, IntermediateField.algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, spectralNorm.eq_of_normalClosure', Submodule.traceDual_eq_span_map_traceDual_of_linearDisjoint, Subfield.relrank_eq_rank_of_le, IntermediateField.isScalarTower_over_bot, Valuation.valuationSubring_not_isField, IntermediateField.adjoin_eq_range_algebraMap_adjoin, IntermediateField.exists_algHom_adjoin_of_splits', FixedPoints.toAlgHom_bijective, IsGaloisGroup.fixedPoints, ValuationSubring.coe_unitGroupMulEquiv_symm_apply, Valuation.Integer.not_isUnit_iff_valuation_lt_one, Valuation.exists_pow_Uniformizer, NumberField.IsCMField.complexConj_eq_self_iff, IsGaloisGroup.subgroup, Valued.integer.finite_quotient_maximalIdeal_pow_of_finite_residueField, Valuation.integer.coe_span_singleton_eq_setOf_le_v_coe, LocalSubring.instIsScalarTowerSubtypeMemSubringToSubringOfPrime, Valuation.HasExtension.mk_smul_mk, Valued.integer.isUnit_iff_norm_eq_one, Valuation.IsUniformizer.not_isUnit, Valued.integer.isPrincipalIdealRing_of_compactSpace, instIsLocalRingSubtypeMemSubringMapOfNontrivial, LocalSubring.le_def, NumberField.IsCMField.RingOfIntegers.complexConj_eq_self_iff, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.isUnit_iff_valued_eq_one, Valuation.IsUniformizer.is_generator, IntermediateField.adjoin_minpoly_coeff_of_exists_primitive_element, FixedPoints.toAlgAut_bijective, instIsPrincipalIdealRingSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers, IntermediateField.LinearDisjoint.basisOfBasisLeft_repr_apply, Valuation.Uniformizer.is_generator, ValuationSubring.coe_primeSpectrumOrderEquiv_symm_apply_asIdeal, NumberField.IsCMField.infinitePlace_complexConj, ValuationSubring.subtype_apply, FixedPoints.coe_algebraMap, ValuationSubring.valuation_eq_one_iff, ValuationSubring.ofPrime_localization, Valuation.HasExtension.instIsScalarTower_valuationSubring, Algebra.algebraMap_ofSubring_apply, Valued.integer.norm_coe_unit, Valuation.HasExtension.coe_algebraMap_valuationSubring_eq, ValuationSubring.algebraMap_injective, Valuation.HasExtension.instLiesOverSubtypeMemValuationSubringValuationSubringMaximalIdeal, perfectClosure.perfectRing, Valuation.leSubmodule_comap_algebraMap_eq_leIdeal, instIsPrincipalIdealRingSubtypeMemSubringIntegerWithZeroMultiplicativeIntValuation, ValuationSubring.primeSpectrumEquiv_apply, NumberField.IsCMField.complexConj_torsion, ValuationSubring.coe_unitGroupToResidueFieldUnits_apply, ValuationSubring.coe_subtype, Valuation.HasExtension.algebraMap_residue_eq_residue_algebraMap, IntermediateField.AdjoinPair.algebraMap_genβ‚‚, NumberField.IsCMField.Units.complexConj_eq_self_iff, Polynomial.int_natDegree, IntermediateField.AdjoinSimple.algebraMap_gen, ValuationSubring.principalUnitGroup_symm_apply, Valuation.HasExtension.algebraMap_injective, ValuationRing.instIsFractionRingInteger, Valuation.HasExtension.algebraMap_mem_maximalIdeal_iff, Valuation.HasExtension.instIsScalarTowerInteger, Valuation.HasExtension.val_smul
toNonAssocSemiring πŸ“–CompOp
16 mathmath: RingHom.comp_restrict, RingEquiv.restrict_symm_apply_coe, RingHom.surjective_codRestrict, instIsStablyFiniteRingSubtypeMem, RingHom.rangeS_codRestrict, RingHom.injective_codRestrict, subtype_injective, coe_subtype, noZeroDivisors, IsLocalRing.exists_factor_valuationRing, RingEquiv.restrict_apply_coe, instCharZero, RingHom.codRestrict_apply, subtype_apply, RingHom.restrict_apply, RingHom.coe_restrict_apply
toSemiring πŸ“–CompOp
22 mathmath: StarAlgEquiv.ofInjective_symm_apply, StarSubalgebra.inclusion_apply, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, StarSubalgebra.subtype_comp_inclusion, StarAlgEquiv.ofInjective_apply, SubalgebraClass.coe_val, StarAlgHom.coe_codRestrict, StarSubalgebra.subtype_apply, StarSubalgebra.isClosedEmbedding_inclusion, StarSubalgebra.instIsTopologicalSemiringSubtypeMem, StarSubalgebra.coe_subtype, toIsOrderedRing, StarSubalgebra.starModule, SubalgebraClass.coe_algebraMap, StarSubalgebra.toSubalgebra_subtype, StarAlgHom.subtype_comp_codRestrict, StarSubalgebra.inclusion_injective, toIsStrictOrderedRing, cfcHom_eq_of_isStarNormal, StarAlgHom.injective_codRestrict, StarSubalgebra.isEmbedding_inclusion, continuousFunctionalCalculus_map_id

Theorems

NameKindAssumesProvesValidatesDepends On
addSubmonoidWithOneClass πŸ“–mathematicalβ€”AddSubmonoidWithOneClass
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”toAddSubmonoidClass
SubmonoidClass.toOneMemClass
toSubmonoidClass
coe_subtype πŸ“–mathematicalβ€”DFunLike.coe
RingHom
SetLike.instMembership
toNonAssocSemiring
RingHom.instFunLike
subtype
β€”β€”
noZeroDivisors πŸ“–mathematicalβ€”NoZeroDivisors
SetLike.instMembership
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
toNonAssocSemiring
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
toAddSubmonoidClass
β€”Function.Injective.noZeroDivisors
AddSubmonoidClass.toZeroMemClass
toAddSubmonoidClass
Subtype.coe_injective
nonUnitalSubsemiringClass πŸ“–mathematicalβ€”NonUnitalSubsemiringClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”toAddSubmonoidClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
toSubmonoidClass
nontrivial πŸ“–mathematicalβ€”Nontrivial
SetLike.instMembership
β€”nontrivial_of_ne
AddSubmonoidClass.toZeroMemClass
toAddSubmonoidClass
AddSubmonoidWithOneClass.toOneMemClass
addSubmonoidWithOneClass
zero_ne_one
NeZero.one
subtype_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
SetLike.instMembership
toNonAssocSemiring
RingHom.instFunLike
subtype
β€”β€”
subtype_injective πŸ“–mathematicalβ€”SetLike.instMembership
DFunLike.coe
RingHom
toNonAssocSemiring
RingHom.instFunLike
subtype
β€”β€”
toAddSubmonoidClass πŸ“–mathematicalβ€”AddSubmonoidClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
toSubmonoidClass πŸ“–mathematicalβ€”SubmonoidClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
β€”β€”

(root)

Definitions

NameCategoryTheorems
AddSubmonoidWithOneClass πŸ“–CompData
1 mathmath: SubsemiringClass.addSubmonoidWithOneClass
SubsemiringClass πŸ“–CompData
8 mathmath: RingConeClass.toSubsemiringClass, StarSubalgebra.subsemiringClass, StarSubsemiring.subsemiringClass, Subsemiring.instSubsemiringClass, Subalgebra.instSubsemiringClass, HomogeneousSubsemiring.subsemiringClass, RingPreordering.instSubsemiringClass, SubringClass.toSubsemiringClass

Theorems

NameKindAssumesProvesValidatesDepends On
natCast_mem πŸ“–mathematicalβ€”SetLike.instMembership
AddMonoidWithOne.toNatCast
β€”Nat.cast_zero
AddSubmonoidClass.toZeroMemClass
AddSubmonoidWithOneClass.toAddSubmonoidClass
Nat.cast_add
Nat.cast_one
AddSubmonoidClass.toAddMemClass
AddSubmonoidWithOneClass.toOneMemClass
ofNat_mem πŸ“–mathematicalβ€”SetLike.instMembershipβ€”Nat.cast_ofNat
natCast_mem

---

← Back to Index