| Name | Category | Theorems |
copy π | CompOp | 3 mathmath: copy_eq, coe_copy, copy_toSubmonoid
|
instMin π | CompOp | 8 mathmath: mem_inf, map_comap_eq, map_inf, op_inf, comap_inf, coe_inf, unop_inf, Algebra.inf_toSubsemiring
|
instPartialOrder π | CompOp | 43 mathmath: closure_le, centralizer_le, closure_mono, RingPreordering.toSubsemiring_strictMono, gc_map_comap, RingPreordering.toSubsemiring_lt_toSubsemiring, op_le_op_iff, homogeneousCore_mono, le_op_iff, Subring.toSubsemiring_mono, Subring.toSubsemiring_lt_toSubsemiring, unop_le_unop_iff, StarSubsemiring.toSubsemiring_le_iff, prod_mono_right, opEquiv_apply, RingPreordering.toSubsemiring_mono, Subring.toSubsemiring_le_toSubsemiring, toSubmonoid_mono, closure_le_centralizer_centralizer, op_le_iff, RingPreordering.toSubsemiring_le_toSubsemiring, pointwise_smul_subset_iff, toSubmonoid_strictMono, opEquiv_symm_apply, Subring.toSubsemiring_strictMono, RingHom.sclosure_preimage_le, StarSubalgebra.rangeS_le, pointwise_smul_le_pointwise_smul_iff, toSubsemiring_homogeneousCore_le, instCovariantClassHSMulLe, Subring.mk_le_mk, toAddSubmonoid_mono, prod_mono_left, subset_pointwise_smul_iff, le_topologicalClosure, map_le_iff_le_comap, toAddSubmonoid_strictMono, pointwise_smul_le_pointwise_smul_iffβ, le_centralizer_centralizer, pointwise_smul_le_iffβ, Subalgebra.rangeS_le, le_pointwise_smul_iffβ, center_le_centralizer
|
instSetLike π | CompOp | 197 mathmath: RingCone.coe_set_mk, mem_sumSq, mem_toNonUnitalSubsemiring, mem_sSup_of_directedOn, mem_top, coe_subtype, Polynomial.mem_lifts_iff_mem_alg, closure_le, eq_top_iff', isClosed_topologicalClosure, RingPreordering.mem_mk, coe_pow, mem_carrier, mem_iInf, Polynomial.monomial_mem_lifts, CentroidHom.star_centerToCentroidCenter, mem_closure, Polynomial.X_mem_lifts, toIsOrderedRing, mem_smul_pointwise_iff_exists, StarSubsemiring.mem_toSubsemiring, smul_mem_pointwise_smul_iff, Subring.coe_toSubsemiring, mem_bot, nontrivial, Submonoid.subsemiringClosure_coe, RingHom.rangeSRestrict_surjective, centerCongr_symm_apply_coe, IsScalarTower.subsemiring, mem_subalgebraOfSubsemiring, Polynomial.Splits.mem_lift_of_roots_mem_range, coe_prod, RingEquiv.ofLeftInverseS_symm_apply, addEquivOp_apply_coe, isScalarTower, Subring.mopRingEquivOp_apply_coe, RingCon.comapQuotientEquivRangeS_symm_mk, RingHom.coe_rangeSRestrict, mem_iSup_of_directed, smul_def, coe_iSup_of_directed, coe_equivMapOfInjective_apply, Subalgebra.mopAlgEquivOp_symm_apply, coe_sInf, toIsStrictOrderedRing, coe_add, coe_one, isArtinianRing_rangeS, Subring.mem_toSubsemiring, Polynomial.C_mem_lifts, mem_inf, RingCone.mem_mk, mem_mk', coe_toSubmonoid, subset_closure, centerCongr_apply_coe, one_mem, StarSubsemiring.coe_toSubsemiring, closure_le_centralizer_centralizer, Polynomial.mem_lifts, noZeroDivisors, Subalgebra.linearEquivOp_apply_coe, mem_map_equiv, Polynomial.lifts_iff_ringHom_rangeS, Subring.topEquiv_apply, RingEquiv.subsemiringMap_apply_coe, mem_op, Subring.coe_set_mk, HomogeneousSubsemiring.mem_iff, Subring.mopRingEquivOp_symm_apply, centerToMulOpposite_symm_apply_coe, IsHomogeneous.subsemiringClosure, addEquivOp_symm_apply_coe, coe_carrier_toSubmonoid, Polynomial.C'_mem_lifts, smul_mem_pointwise_smul_iffβ, mem_centralizer_iff, centerToMulOpposite_apply_coe, isHomogeneous_iff_subset_iInter, RingPreordering.coe_toSubsemiring, RingEquiv.subsemiringMap_symm_apply_coe, RingCon.comapQuotientEquivRangeS_mk, Subring.topEquiv_symm_apply_coe, ext_iff, center.smulCommClass_right, RingCon.coe_quotientKerEquivRangeS_mk, rangeS_subtype, comap_toSubmonoid, coe_sumSq, mem_inv_pointwise_smul_iffβ, RingHom.mem_rangeS, Subalgebra.mem_mk, closure_eq, mem_comap, StarSubsemiring.coe_mk, inclusion_injective, Subalgebra.coe_toSubsemiring, CharP.subsemiring, mopRingEquivOp_apply_coe, IsLocalization.scaleRoots_commonDenom_mem_lifts, zero_mem, instSMulCommClassSubtypeMemCenter_1, coe_inf, instSubsemiringClass, coe_toNonUnitalSubsemiring, isHomogeneous_iff_forall_subset, coe_top, Subalgebra.coe_valA, RingHom.mem_rangeS_self, smulCommClass_left, Subalgebra.algEquivOpMop_apply, Polynomial.lifts_iff_coeff_lifts, mem_toSubmonoid, coe_centralizer, coe_pointwise_smul, Subring.ringEquivOpMop_symm_apply_coe, Subalgebra.mem_toSubsemiring, mem_closure_iff_exists_list, mem_toAddSubmonoid, map_toSubmonoid, isNoetherianRing_rangeS, RingPreordering.mem_toSubsemiring, topologicalSemiring, Algebra.algebraMap_ofSubsemiring, ringEquivOpMop_symm_apply_coe, instSMulCommClassSubtypeMemCenter, Polynomial.X_pow_mem_lifts, coe_closure_eq, topologicalClosure_coe, mem_pointwise_smul_iff_inv_smul_mem, mem_map, NonUnitalNonAssocSemiring.mem_center_iff, HomogeneousSubsemiring.is_homogeneous', coe_ofClass, coe_sSup_of_directedOn, coe_matrix, Polynomial.lifts_iff_liftsRing, mem_mk, topEquiv_symm_apply_coe, coe_op, coe_zero, coe_set_mk, centralizer_eq_top_iff_subset, CentroidHom.centerToCentroidCenter_apply, coe_mk', Subalgebra.linearEquivOp_symm_apply_coe, Subring.mem_mk, ringEquivOpMop_apply, subtype_apply, RingEquiv.ofLeftInverseS_apply, Submonoid.subsemiringClosure_mem, continuousSMul, subtype_injective, coe_toAddSubmonoid, Polynomial.lifts_iff_set_range, Subalgebra.mem_perfectClosure_iff, smulCommClass_right, le_centralizer_centralizer, mopRingEquivOp_symm_apply, coe_iInf, coe_center, Algebra.IsInvariant.charpoly_mem_lifts, topEquiv_apply, coe_map, Module.End.mem_subsemiringCenter_iff, mem_closure_of_mem, instCanLiftSetCoeAndMemOfNatForallForallForallForallHAddForallForallForallForallHMul, RingHom.mem_eqLocusS, coe_mul, mem_center_iff, Subalgebra.mopAlgEquivOp_apply_coe, Subalgebra.coe_mk, faithfulSMul, RingHom.eqOn_sclosure, Subalgebra.algEquivOpMop_symm_apply_coe, Subring.ringEquivOpMop_apply, mem_pointwise_smul_iff_inv_smul_memβ, mem_prod, mem_nonneg, mem_unop, IsHomogeneous.subsemiringClosure_of_isHomogeneousElem, Polynomial.mem_lift_of_splits_of_roots_mem_range, integralClosure.mem_lifts_of_monic_of_dvd_map, Polynomial.lifts_iff_coeffs_subset_range, mem_closure_iff, Polynomial.mem_map_rangeS, Subalgebra.coe_valA', mem_inv_pointwise_smul_iff, coe_nonneg, RingHom.coe_rangeS, coe_unop, mem_sInf, coe_comap, RingHom.ker_rangeSRestrict, coe_bot, RingPreordering.coe_set_mk, center.smulCommClass_left
|
instTop π | CompOp | 33 mathmath: Subring.range_snd, mem_top, eq_top_iff', RingHom.rangeS_eq_top, op_eq_top, Algebra.toSubsemiring_eq_top, center_eq_top, RingHom.rangeS_toSubmonoid, prod_top, unop_eq_top, Subring.toSubsemiring_top, Subring.topEquiv_apply, top_prod_top, comap_top, Subring.topEquiv_symm_apply_coe, RingHom.rangeS_eq_map, range_fst, RingHom.rangeS_top_iff_surjective, Algebra.top_toSubsemiring, RingHom.rangeS_top_of_surjective, coe_top, unop_top, range_snd, closure_univ, topEquiv_symm_apply_coe, centralizer_eq_top_iff_subset, RingCon.rangeS_mk', Subring.range_fst, top_prod, op_top, topEquiv_apply, Subring.toSubsemiring_eq_top, RingHom.eqLocusS_same
|
mk' π | CompOp | 4 mathmath: mem_mk', mk'_toAddSubmonoid, coe_mk', mk'_toSubmonoid
|
ofClass π | CompOp | 2 mathmath: RingHom.surjective_codRestrict, coe_ofClass
|
subtype π | CompOp | 8 mathmath: coe_subtype, rangeS_subtype, Subalgebra.coe_valA, Algebra.algebraMap_ofSubsemiring, subtype_apply, subtype_injective, Subalgebra.toSubsemiring_subtype, Subalgebra.coe_valA'
|
toAddSubmonoid π | CompOp | 15 mathmath: Submonoid.subsemiringClosure_toAddSubmonoid, pointwise_smul_toAddSubmonoid, Subring.coe_matrix, sInf_toAddSubmonoid, mk'_toAddSubmonoid, Subalgebra.coe_matrix, AlgEquiv.subalgebraMap_apply_coe, mem_toAddSubmonoid, toAddSubmonoid_mono, coe_matrix, toAddSubmonoid_injective, nonneg_toAddSubmonoid, toAddSubmonoid_strictMono, coe_toAddSubmonoid, AlgEquiv.subalgebraMap_symm_apply_coe
|
toCommSemiring π | CompOp | 1 mathmath: Algebra.algebraMap_ofSubsemiring
|
toNonAssocSemiring π | CompOp | 41 mathmath: coe_subtype, CentroidHom.star_centerToCentroidCenter, RingHom.rangeSRestrict_surjective, centerCongr_symm_apply_coe, RingEquiv.ofLeftInverseS_symm_apply, addEquivOp_apply_coe, RingCon.comapQuotientEquivRangeS_symm_mk, RingHom.coe_rangeSRestrict, coe_equivMapOfInjective_apply, Subalgebra.mopAlgEquivOp_symm_apply, coe_add, centerCongr_apply_coe, noZeroDivisors, RingEquiv.subsemiringMap_apply_coe, Subring.mopRingEquivOp_symm_apply, centerToMulOpposite_symm_apply_coe, addEquivOp_symm_apply_coe, centerToMulOpposite_apply_coe, RingEquiv.subsemiringMap_symm_apply_coe, RingCon.comapQuotientEquivRangeS_mk, RingCon.coe_quotientKerEquivRangeS_mk, rangeS_subtype, inclusion_injective, CharP.subsemiring, mopRingEquivOp_apply_coe, Subalgebra.coe_valA, Subalgebra.algEquivOpMop_apply, topologicalSemiring, ringEquivOpMop_symm_apply_coe, topEquiv_symm_apply_coe, CentroidHom.centerToCentroidCenter_apply, ringEquivOpMop_apply, subtype_apply, RingEquiv.ofLeftInverseS_apply, subtype_injective, mopRingEquivOp_symm_apply, topEquiv_apply, coe_mul, Subring.ringEquivOpMop_apply, Subalgebra.coe_valA', RingHom.ker_rangeSRestrict
|
toNonUnitalSubsemiring π | CompOp | 9 mathmath: mem_toNonUnitalSubsemiring, sumSq_toNonUnitalSubsemiring, toNonUnitalSubsemiring_toSubsemiring, coe_toNonUnitalSubsemiring, toNonUnitalSubsemiring_injective, one_mem_toNonUnitalSubsemiring, toNonUnitalSubsemiring_inj, NonUnitalSubsemiring.toSubsemiring_toNonUnitalSubsemiring, Submonoid.subsemiringClosure_toNonUnitalSubsemiring
|
toSemiring π | CompOp | 6 mathmath: toIsOrderedRing, toIsStrictOrderedRing, isArtinianRing_rangeS, Subalgebra.coe_valA, isNoetherianRing_rangeS, RingHom.ker_rangeSRestrict
|
toSubmonoid π | CompOp | 57 mathmath: RingPreordering.ext_iff, mem_carrier, Subalgebra.coe_toAddSubmonoid, Subring.addEquivOp_apply_coe, IntermediateField.mem_carrier, StarSubalgebra.toNonUnitalStarSubalgebra_toStarSubalgebra, addEquivOp_apply_coe, Subring.toSubmonoid_mono, RingHom.rangeS_toSubmonoid, Subring.mopRingEquivOp_apply_coe, Subring.mk'_toSubmonoid, coe_toSubmonoid, VonNeumannAlgebra.centralizer_centralizer', toSubmonoid_mono, StarSubsemiring.mem_carrier, Subalgebra.linearEquivOp_apply_coe, Subalgebra.mem_carrier, ValuationSubring.mem_carrier, addEquivOp_symm_apply_coe, coe_carrier_toSubmonoid, center_toSubmonoid, Subalgebra.algebraMap_mem', toSubmonoid_strictMono, comap_toSubmonoid, RingPreordering.neg_one_notMem', Subfield.coe_inf, mopRingEquivOp_apply_coe, StarSubalgebra.mem_carrier, centralizer_toSubmonoid, mem_toSubmonoid, ValuationSubring.mem_or_inv_mem', Subring.mem_carrier, Subring.toSubmonoid_strictMono, Subring.ringEquivOpMop_symm_apply_coe, map_toSubmonoid, Subring.coe_toSubmonoid, ringEquivOpMop_symm_apply_coe, RingPreordering.mem_of_isSquare', Subfield.mem_toSubmonoid, op_toSubmonoid, zero_mem', Subalgebra.linearEquivOp_symm_apply_coe, Subring.sInf_toSubmonoid, copy_toSubmonoid, sInf_toSubmonoid, IsDedekindDomain.HeightOneSpectrum.adicCompletionIntegers.mem_units_iff_valued_eq_one, Subring.mem_toSubmonoid, toSubmonoid_injective, mk'_toSubmonoid, Subalgebra.mopAlgEquivOp_apply_coe, Subalgebra.algEquivOpMop_symm_apply_coe, unop_toSubmonoid, Subfield.mem_carrier, Subfield.coe_toSubmonoid, Subring.addEquivOp_symm_apply_coe, Subring.toSubmonoid_injective, Subring.centralizer_toSubmonoid
|