Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Algebra/Squarefree/Basic.lean

Statistics

MetricCount
Definitions0
Theoremssquarefree_iff, squarefree_prod_of_pairwise_isCoprime, squarefree_natAbs, squarefree_natCast, squarefree, squarefree, of_squarefree_mul, squarefree, squarefree, dvd_of_squarefree_of_mul_dvd_mul_left, dvd_of_squarefree_of_mul_dvd_mul_right, dvd_pow_iff_dvd, eq_zero_or_one_of_pow_of_not_isUnit, gcd_left, gcd_right, isRadical, ne_zero, of_mul_left, of_mul_right, pow_dvd_of_pow_dvd, pow_dvd_of_squarefree_of_pow_succ_dvd_mul_left, pow_dvd_of_squarefree_of_pow_succ_dvd_mul_right, squarefree_of_dvd, squarefree_iff_nodup_normalizedFactors, exists_squarefree_dvd_pow_of_ne_zero, irreducible_sq_not_dvd_iff_eq_zero_and_no_irreducibles_or_squarefree, isRadical_iff_squarefree_of_ne_zero, isRadical_iff_squarefree_or_zero, not_squarefree_zero, squarefree_iff_emultiplicity_le_one, squarefree_iff_irreducible_sq_not_dvd_of_exists_irreducible, squarefree_iff_irreducible_sq_not_dvd_of_ne_zero, squarefree_iff_no_irreducibles, squarefree_mul_iff, squarefree_one
35
Total35

Associated

Theorems

NameKindAssumesProvesValidatesDepends On
squarefree_iff πŸ“–mathematicalAssociatedSquarefreeβ€”Squarefree.squarefree_of_dvd
dvd'
dvd

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
squarefree_prod_of_pairwise_isCoprime πŸ“–mathematicalSet.Pairwise
SetLike.coe
Finset
instSetLike
Function.onFun
IsRelPrime
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Squarefree
prod
CommMonoidWithZero.toCommMonoid
β€”cons_induction
prod_cons
squarefree_mul_iff
IsRelPrime.prod_right
Set.pairwise_insert
coe_cons
mem_cons_of_mem

Int

Theorems

NameKindAssumesProvesValidatesDepends On
squarefree_natAbs πŸ“–mathematicalβ€”Squarefree
Nat.instMonoid
instMonoid
β€”Function.Surjective.forall
natAbs_surjective
squarefree_natCast πŸ“–mathematicalβ€”Squarefree
instMonoid
Nat.instMonoid
β€”squarefree_natAbs

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
squarefree πŸ“–mathematicalIrreducible
CommMonoid.toMonoid
Squarefreeβ€”isUnit_or_isUnit
mul_assoc
isUnit_of_mul_isUnit_left
instIsDedekindFiniteMonoid

IsRadical

Theorems

NameKindAssumesProvesValidatesDepends On
squarefree πŸ“–mathematicalIsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Squarefreeβ€”isUnit_iff_dvd_one
mul_dvd_mul_iff_right
mul_ne_zero_iff
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
mul_assoc
one_mul
pow_two
mul_left_comm

IsRelPrime

Theorems

NameKindAssumesProvesValidatesDepends On
of_squarefree_mul πŸ“–mathematicalSquarefree
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsRelPrimeβ€”mul_dvd_mul

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
squarefree πŸ“–mathematicalIsUnit
CommMonoid.toMonoid
Squarefreeβ€”isUnit_of_mul_isUnit_left
instIsDedekindFiniteMonoid
isUnit_of_dvd_unit

Prime

Theorems

NameKindAssumesProvesValidatesDepends On
squarefree πŸ“–mathematicalPrimeSquarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
β€”Irreducible.squarefree
irreducible

Squarefree

Theorems

NameKindAssumesProvesValidatesDepends On
dvd_of_squarefree_of_mul_dvd_mul_left πŸ“–β€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”dvd_of_squarefree_of_mul_dvd_mul_right
mul_comm
dvd_of_squarefree_of_mul_dvd_mul_right πŸ“–β€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
exists_dvd_and_dvd_of_dvd_mul
squarefree_of_dvd
isRadical
sq
dvd_trans
mul_right_injectiveβ‚€
IsCancelMulZero.toIsLeftCancelMulZero
ne_zero
mul_assoc
mul_comm
dvd_pow_iff_dvd πŸ“–mathematicalSquarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Monoid.toNatPow
β€”isRadical
Dvd.dvd.pow
eq_zero_or_one_of_pow_of_not_isUnit πŸ“–β€”Squarefree
Monoid.toNatPow
IsUnit
β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
sq
pow_dvd_pow
squarefree_of_dvd
refl
instReflDvd_mathlib
gcd_left πŸ“–mathematicalSquarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
GCDMonoid.gcdβ€”squarefree_of_dvd
GCDMonoid.gcd_dvd_left
gcd_right πŸ“–mathematicalSquarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
GCDMonoid.gcdβ€”squarefree_of_dvd
GCDMonoid.gcd_dvd_right
isRadical πŸ“–mathematicalSquarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
IsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Monoid.toNatPow
β€”isRadical_iff_pow_one_lt
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
exists_dvd_and_dvd_of_dvd_mul
sq
IsRelPrime.mul_dvd
IsRelPrime.of_squarefree_mul
ne_zero πŸ“–β€”Squarefree
MonoidWithZero.toMonoid
β€”β€”not_squarefree_zero
of_mul_left πŸ“–β€”Squarefree
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”dvd_mul_of_dvd_left
of_mul_right πŸ“–β€”Squarefree
CommMonoid.toMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”dvd_mul_of_dvd_right
pow_dvd_of_pow_dvd πŸ“–β€”Squarefree
semigroupDvd
Monoid.toSemigroup
Monoid.toNatPow
β€”β€”IsUnit.dvd
IsUnit.pow
eq_zero_or_one_of_pow_of_not_isUnit
squarefree_of_dvd
pow_zero
pow_one
pow_dvd_of_squarefree_of_pow_succ_dvd_mul_left πŸ“–β€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Monoid.toNatPow
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”pow_dvd_of_squarefree_of_pow_succ_dvd_mul_right
mul_comm
pow_dvd_of_squarefree_of_pow_succ_dvd_mul_right πŸ“–β€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Prime
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Monoid.toNatPow
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”β€”Prime.not_unit
mul_dvd_mul_left
mul_dvd_mul_iff_left
IsCancelMulZero.toIsLeftCancelMulZero
Prime.ne_zero
mul_assoc
pow_succ'
Prime.pow_dvd_of_dvd_mul_left
Dvd.dvd.trans
pow_dvd_pow
squarefree_of_dvd πŸ“–β€”semigroupDvd
Monoid.toSemigroup
Squarefree
β€”β€”Dvd.dvd.trans

UniqueFactorizationMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
squarefree_iff_nodup_normalizedFactors πŸ“–mathematicalβ€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Multiset.Nodup
normalizedFactors
β€”squarefree_iff_emultiplicity_le_one
Multiset.nodup_iff_count_le_one
irreducible_of_normalized_factor
normalize_normalized_factor
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
emultiplicity_eq_count_normalizedFactors
Irreducible.not_isUnit
Multiset.count_eq_zero_of_notMem
Nat.instCanonicallyOrderedAdd
eq_or_ne
emultiplicity_zero_eq_zero_of_ne_zero
WfDvdMonoid.exists_irreducible_factor
toIsWellFounded
le_trans
emultiplicity_le_emultiplicity_of_dvd_left

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_squarefree_dvd_pow_of_ne_zero πŸ“–mathematicalβ€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
Monoid.toNatPow
β€”WfDvdMonoid.induction_on_irreducible
UniqueFactorizationMonoid.toIsWellFounded
squarefree_one
one_dvd
IsUnit.dvd
Irreducible.squarefree
dvd_mul_right
pow_one
isUnit_of_dvd_one
pow_zero
dvd_mul_of_dvd_right
mul_dvd_mul
pow_succ
mul_comm
squarefree_mul_iff
UniqueFactorizationMonoid.toIsCancelMulZero
instDecompositionMonoidOfNonemptyGCDMonoid
instNonemptyGCDMonoidOfNormalizedGCDMonoid
instNonemptyNormalizedGCDMonoidOfUniqueFactorizationMonoid
Irreducible.isRelPrime_iff_not_dvd
mul_dvd_mul_left
dvd_pow_self
LT.lt.ne'
mul_pow
irreducible_sq_not_dvd_iff_eq_zero_and_no_irreducibles_or_squarefree πŸ“–mathematicalβ€”semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulZeroClass.toZero
Irreducible
MonoidWithZero.toMonoid
Squarefree
β€”eq_or_ne
squarefree_iff_no_irreducibles
Irreducible.not_isUnit
isRadical_iff_squarefree_of_ne_zero πŸ“–mathematicalβ€”IsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Squarefree
β€”IsRadical.squarefree
Squarefree.isRadical
isRadical_iff_squarefree_or_zero πŸ“–mathematicalβ€”IsRadical
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
CommMonoidWithZero.toMonoidWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Squarefree
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”em
IsRadical.squarefree
Squarefree.isRadical
zero_isRadical_iff
isReduced_of_noZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
not_squarefree_zero πŸ“–mathematicalβ€”Squarefree
MonoidWithZero.toMonoid
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”Squarefree.eq_1
MulZeroClass.mul_zero
NeZero.one
squarefree_iff_emultiplicity_le_one πŸ“–mathematicalβ€”Squarefree
CommMonoid.toMonoid
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
emultiplicity
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
IsUnit
β€”sq
pow_dvd_iff_le_emultiplicity
not_le
Nat.instAtLeastTwoHAddOfNat
Nat.cast_one
one_add_one_eq_two
Order.add_one_le_iff_of_not_isMax
squarefree_iff_irreducible_sq_not_dvd_of_exists_irreducible πŸ“–mathematicalIrreducible
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
Squarefree
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”irreducible_sq_not_dvd_iff_eq_zero_and_no_irreducibles_or_squarefree
squarefree_iff_irreducible_sq_not_dvd_of_ne_zero πŸ“–mathematicalβ€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”irreducible_sq_not_dvd_iff_eq_zero_and_no_irreducibles_or_squarefree
squarefree_iff_no_irreducibles πŸ“–mathematicalβ€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
semigroupDvd
SemigroupWithZero.toSemigroup
MonoidWithZero.toSemigroupWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
β€”Irreducible.not_isUnit
by_contra
ne_zero_of_dvd_ne_zero
dvd_mul_left
WfDvdMonoid.exists_irreducible_factor
Dvd.dvd.trans
mul_dvd_mul
squarefree_mul_iff πŸ“–mathematicalβ€”Squarefree
MonoidWithZero.toMonoid
CommMonoidWithZero.toMonoidWithZero
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
IsRelPrime
β€”IsRelPrime.of_squarefree_mul
Squarefree.of_mul_left
Squarefree.of_mul_right
Squarefree.dvd_of_squarefree_of_mul_dvd_mul_left
Squarefree.dvd_of_squarefree_of_mul_dvd_mul_right
squarefree_one πŸ“–mathematicalβ€”Squarefree
CommMonoid.toMonoid
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”IsUnit.squarefree
isUnit_one

---

← Back to Index