Documentation Verification Report

CHSH

πŸ“ Source: Mathlib/Algebra/Star/CHSH.lean

Statistics

MetricCount
DefinitionsIsCHSHTuple
1
TheoremsCHSH_id, CHSH_inequality_of_comm, Aβ‚€Bβ‚€_commutes, Aβ‚€B₁_commutes, Aβ‚€_inv, Aβ‚€_sa, A₁Bβ‚€_commutes, A₁B₁_commutes, A₁_inv, A₁_sa, Bβ‚€_inv, Bβ‚€_sa, B₁_inv, B₁_sa, sqrt_two_inv_mul_self, tsirelson_inequality
16
Total17

IsCHSHTuple

Theorems

NameKindAssumesProvesValidatesDepends On
Aβ‚€Bβ‚€_commutes πŸ“–mathematicalIsCHSHTupleMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
Aβ‚€B₁_commutes πŸ“–mathematicalIsCHSHTupleMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
Aβ‚€_inv πŸ“–mathematicalIsCHSHTupleMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
Aβ‚€_sa πŸ“–mathematicalIsCHSHTupleStar.star
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
A₁Bβ‚€_commutes πŸ“–mathematicalIsCHSHTupleMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
A₁B₁_commutes πŸ“–mathematicalIsCHSHTupleMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
A₁_inv πŸ“–mathematicalIsCHSHTupleMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
A₁_sa πŸ“–mathematicalIsCHSHTupleStar.star
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
Bβ‚€_inv πŸ“–mathematicalIsCHSHTupleMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
Bβ‚€_sa πŸ“–mathematicalIsCHSHTupleStar.star
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
B₁_inv πŸ“–mathematicalIsCHSHTupleMonoid.toNatPow
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”
B₁_sa πŸ“–mathematicalIsCHSHTupleStar.star
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
β€”β€”

TsirelsonInequality

Theorems

NameKindAssumesProvesValidatesDepends On
sqrt_two_inv_mul_self πŸ“–mathematicalβ€”Real
Real.instMul
Real.instInv
Real.sqrt
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
mul_inv
Real.mul_self_sqrt
Real.instIsOrderedRing

(root)

Definitions

NameCategoryTheorems
IsCHSHTuple πŸ“–CompDataβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
CHSH_id πŸ“–mathematicalMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”
CHSH_inequality_of_comm πŸ“–mathematicalIsCHSHTuple
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Preorder.toLE
PartialOrder.toPreorder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
CHSH_id
IsCHSHTuple.Aβ‚€_inv
IsCHSHTuple.A₁_inv
IsCHSHTuple.Bβ‚€_inv
IsCHSHTuple.B₁_inv
Algebra.smul_def
map_ofNat
RingHom.instRingHomClass
SemigroupAction.mul_smul
one_div
inv_mul_cancelβ‚€
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
one_smul
StarAddMonoid.star_add
star_sub
star_ofNat
StarMul.star_mul
IsCHSHTuple.Bβ‚€_sa
IsCHSHTuple.Aβ‚€_sa
mul_comm
IsCHSHTuple.B₁_sa
IsCHSHTuple.A₁_sa
smul_nonneg
IsOrderedModule.toPosSMulMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsOrderedRing
star_mul_self_nonneg
le_of_sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
sub_add_eq_sub_sub
tsirelson_inequality πŸ“–mathematicalIsCHSHTuple
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
StarRing.toStarMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Preorder.toLE
PartialOrder.toPreorder
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
Real
Algebra.toSMul
Real.instCommSemiring
Monoid.toNatPow
Real.instMonoid
Real.sqrt
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”Int.cast_smul_eq_zsmul
SemigroupAction.mul_smul
Nat.instAtLeastTwoHAddOfNat
smul_add
sq
mul_sub
mul_add
Distrib.leftDistribClass
sub_mul
add_mul
Distrib.rightDistribClass
smul_sub
Algebra.mul_smul_comm
Algebra.smul_mul_assoc
TsirelsonInequality.sqrt_two_inv_mul_self
IsCHSHTuple.A₁_inv
IsCHSHTuple.Aβ‚€_inv
IsCHSHTuple.Bβ‚€_inv
IsCHSHTuple.B₁_inv
IsCHSHTuple.A₁Bβ‚€_commutes
IsCHSHTuple.Aβ‚€Bβ‚€_commutes
IsCHSHTuple.A₁B₁_commutes
IsCHSHTuple.Aβ‚€B₁_commutes
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.termg_eq
one_zsmul
add_zero
Mathlib.Tactic.Abel.const_add_termg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsInt.neg_to_eq
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Abel.zero_termg
neg_smul
one_smul
add_comm
add_left_comm
add_assoc
Int.cast_ofNat
Int.cast_neg
neg_mul
mul_inv_cancel_of_invertible
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
star_sub
StarModule.star_smul
StarAddMonoid.star_add
IsCHSHTuple.A₁_sa
IsCHSHTuple.Aβ‚€_sa
IsCHSHTuple.Bβ‚€_sa
IsCHSHTuple.B₁_sa
star_mul_self_nonneg
Mathlib.Meta.Positivity.smul_nonneg_of_pos_of_nonneg
IsOrderedModule.toPosSMulMono
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.sqrt_pos_of_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.instAtLeastTwo
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedCancelAddMonoid.toIsOrderedAddMonoid
IsOrderedAddMonoid.toIsOrderedCancelAddMonoid
StarOrderedRing.toIsOrderedAddMonoid
le_of_sub_nonneg
covariant_swap_add_of_covariant_add
sub_add_eq_sub_sub

---

← Back to Index