Documentation Verification Report

Pointwise

πŸ“ Source: Mathlib/Algebra/Star/Pointwise.lean

Statistics

MetricCount
DefinitionsinstInvolutiveStar
1
Theoremscompl_star, iInter_star, iUnion_star, image_star, instTrivialStar, inter_star, mem_star, nonempty_star, star_add, star_empty, star_inv, star_inv', star_mem_star, star_mul, star_preimage, star_singleton, star_subset, star_subset_star, star_univ, union_star, star_coe_eq
21
Total22

Set

Definitions

NameCategoryTheorems
instInvolutiveStar πŸ“–CompOp
12 mathmath: Module.End.spectrum_intrinsicStar, star_centralizer, StarMemClass.star_coe_eq, NonUnitalStarSubalgebra.coe_centralizer, StarSubalgebra.centralizer_toSubalgebra, StarAlgebra.star_subset_adjoin, StarAlgebra.adjoin_toSubalgebra, StarSubalgebra.coe_centralizer_centralizer, NonUnitalStarSubalgebra.coe_centralizer_centralizer, NonUnitalStarSubalgebra.centralizer_toNonUnitalSubalgebra, StarSubalgebra.coe_centralizer, StarAlgebra.adjoin_eq_span

Theorems

NameKindAssumesProvesValidatesDepends On
compl_star πŸ“–mathematicalβ€”Star.star
Set
star
Compl.compl
instCompl
β€”preimage_compl
iInter_star πŸ“–mathematicalβ€”Star.star
Set
star
iInter
β€”preimage_iInter
iUnion_star πŸ“–mathematicalβ€”Star.star
Set
star
iUnion
β€”preimage_iUnion
image_star πŸ“–mathematicalβ€”image
Star.star
InvolutiveStar.toStar
Set
star
β€”image_eq_preimage_of_inverse
star_star
instTrivialStar πŸ“–mathematicalβ€”TrivialStar
Set
star
β€”star_preimage
ext
TrivialStar.star_trivial
inter_star πŸ“–mathematicalβ€”Star.star
Set
star
instInter
β€”preimage_inter
mem_star πŸ“–mathematicalβ€”Set
instMembership
Star.star
star
β€”β€”
nonempty_star πŸ“–mathematicalβ€”Nonempty
Star.star
Set
star
InvolutiveStar.toStar
β€”Function.Surjective.nonempty_preimage
Function.Involutive.surjective
InvolutiveStar.star_involutive
star_add πŸ“–mathematicalβ€”Star.star
Set
star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
add
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”image_image2
image2_image_left
image2_image_right
image2_congr
StarAddMonoid.star_add
star_empty πŸ“–mathematicalβ€”Star.star
Set
star
instEmptyCollection
β€”β€”
star_inv πŸ“–mathematicalβ€”Star.star
Set
star
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”ext
star_inv
star_inv' πŸ“–mathematicalβ€”Star.star
Set
star
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”ext
star_invβ‚€
star_mem_star πŸ“–mathematicalβ€”Set
instMembership
Star.star
star
InvolutiveStar.toStar
β€”star_star
star_mul πŸ“–mathematicalβ€”Star.star
Set
star
InvolutiveStar.toStar
StarMul.toInvolutiveStar
mul
β€”image_image2
image2_image_left
image2_image_right
image2_congr
StarMul.star_mul
image2_swap
star_preimage πŸ“–mathematicalβ€”preimage
Star.star
Set
star
β€”β€”
star_singleton πŸ“–mathematicalβ€”Star.star
Set
star
InvolutiveStar.toStar
instSingletonSet
β€”ext
mem_star
mem_singleton_iff
star_eq_iff_star_eq
star_subset πŸ“–mathematicalβ€”Set
instHasSubset
Star.star
star
InvolutiveStar.toStar
β€”star_subset_star
star_star
star_subset_star πŸ“–mathematicalβ€”Set
instHasSubset
Star.star
star
InvolutiveStar.toStar
β€”Function.Surjective.preimage_subset_preimage_iff
Equiv.surjective
star_univ πŸ“–mathematicalβ€”Star.star
Set
star
univ
β€”β€”
union_star πŸ“–mathematicalβ€”Star.star
Set
star
instUnion
β€”preimage_union

StarMemClass

Theorems

NameKindAssumesProvesValidatesDepends On
star_coe_eq πŸ“–mathematicalβ€”Star.star
Set
InvolutiveStar.toStar
Set.instInvolutiveStar
SetLike.coe
β€”Set.ext
star_mem_iff

---

← Back to Index