Documentation Verification Report

SelfAdjoint

πŸ“ Source: Mathlib/Algebra/Star/SelfAdjoint.lean

Statistics

MetricCount
DefinitionsIsSelfAdjoint, IsStarNormal, selfAdjoint, instCommRingSubtypeMemAddSubgroup, instDistribMulActionSubtypeMemAddSubgroupOfStarModule, instDivSubtypeMemAddSubgroup, instField, instInhabitedSubtypeMemAddSubgroup, instIntCastSubtypeMemAddSubgroup, instInvSubtypeMemAddSubgroup, instModuleSubtypeMemAddSubgroupOfStarModule, instMulActionSubtypeMemAddSubgroupOfStarModule, instMulSubtypeMemAddSubgroup, instNNRatCast, instNatCastSubtypeMemAddSubgroup, instOneSubtypeMemAddSubgroup, instPowSubtypeMemAddSubgroupInt, instPowSubtypeMemAddSubgroupNat, instRatCast, instSMulNNRat, instSMulRat, instSMulSubtypeMemAddSubgroupOfStarModule, skewAdjoint, instDistribMulActionSubtypeMemAddSubgroupOfStarModule, instInhabitedSubtypeMemAddSubgroup, instModuleSubtypeMemAddSubgroupOfStarModule, instSMulSubtypeMemAddSubgroupOfStarModule
27
TheoremsisStarNormal, isStarNormal_add, isStarNormal_sub, add, add_star_self, all, apply, commute_iff, conj_eq, conjugate, conjugate', conjugate_self, div, intCast, inv, invβ‚€, isStarNormal, map, mul, mul_star_self, natCast, neg, nnratCast, ofNat, one, pow, ratCast, smul, smul_iff, smul_mem_skewAdjoint, star_add_self, star_eq, star_iff, star_mul_self, sub, zero, zpow, zpowβ‚€, map, neg, one, one_add, one_sub, smul, star_comm_self, val_inv, zero, isSelfAdjoint_conjugate_iff, isSelfAdjoint_conjugate_iff', isSelfAdjoint, isStarNormal, isSelfAdjoint_conjugate_iff_of_isUnit, isSelfAdjoint_conjugate_iff_of_isUnit', isSelfAdjoint_iff, isSelfAdjoint_map, isSelfAdjoint_smul_of_mem_skewAdjoint, isStarNormal_iff, instNontrivialSubtypeMemAddSubgroup, isSelfAdjoint, isStarNormal, mem_iff, star_val_eq, val_div, val_inv, val_mul, val_nnqsmul, val_nnratCast, val_one, val_pow, val_qsmul, val_ratCast, val_smul, val_zpow, conjugate, conjugate', instIsStarNormalValMemAddSubgroup, isStarNormal_of_mem, mem_iff, smul_mem, star_val_eq, val_smul, star_comm_self'
82
Total109

CommMonoid

Theorems

NameKindAssumesProvesValidatesDepends On
isStarNormal πŸ“–mathematicalβ€”IsStarNormal
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
toMonoid
InvolutiveStar.toStar
StarMul.toInvolutiveStar
β€”mul_comm

Commute

Theorems

NameKindAssumesProvesValidatesDepends On
isStarNormal_add πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
IsStarNormal
Distrib.toAdd
β€”isStarNormal_iff
star_star
star_star
StarAddMonoid.star_add
mul_add
Distrib.leftDistribClass
add_mul
Distrib.rightDistribClass
eq
add_add_add_comm
isStarNormal_sub πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
IsStarNormal
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
β€”isStarNormal_add
neg_right
star_neg
IsStarNormal.neg
sub_eq_add_neg

IsSelfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
β€”StarAddMonoid.star_add
star_eq
add_star_self πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Star.star
β€”StarAddMonoid.star_add
star_star
add_comm
all πŸ“–mathematicalβ€”IsSelfAdjointβ€”TrivialStar.star_trivial
apply πŸ“–β€”IsSelfAdjoint
Pi.instStarForall
β€”β€”Pi.isSelfAdjoint
commute_iff πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Commuteβ€”isSelfAdjoint_iff
StarMul.star_mul
star_eq
Commute.eq
conj_eq πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
StarRing.toStarAddMonoid
DFunLike.coe
RingHom
RingHom.instFunLike
starRingEnd
β€”star_eq
conjugate πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Semigroup.toMul
Star.starβ€”mul_assoc
StarMul.star_mul
star_star
star_eq
conjugate' πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Semigroup.toMul
Star.starβ€”mul_assoc
StarMul.star_mul
star_eq
star_star
conjugate_self πŸ“–β€”IsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Semigroup.toMul
β€”β€”conjugate
div πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
StarRing.toStarAddMonoid
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
β€”star_divβ‚€
star_eq
intCast πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
StarRing.toStarAddMonoid
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
β€”star_intCast
inv πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”star_inv
star_eq
invβ‚€ πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”star_invβ‚€
star_eq
isStarNormal πŸ“–mathematicalIsSelfAdjointIsStarNormalβ€”star_eq
map πŸ“–mathematicalIsSelfAdjointDFunLike.coeβ€”StarHomClass.map_star
mul πŸ“–β€”IsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
CommMagma.toMul
CommSemigroup.toCommMagma
β€”β€”star_mul'
star_eq
mul_star_self πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Star.star
β€”star_star
star_mul_self
natCast πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”star_natCast
neg πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”star_neg
star_eq
nnratCast πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
StarRing.toStarAddMonoid
NNRat.cast
DivisionSemiring.toNNRatCast
β€”star_nnratCast
ofNat πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
β€”natCast
one πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
β€”star_one
pow πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPowβ€”star_pow
star_eq
ratCast πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
DivisionRing.toRing
StarRing.toStarAddMonoid
DivisionRing.toRatCast
β€”star_ratCast
smul πŸ“–β€”IsSelfAdjointβ€”β€”StarModule.star_smul
star_eq
smul_iff πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
IsUnit
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
β€”CanLift.prf
instCanLiftUnitsValIsUnit
inv_smul_smul
Units.ext
star_eq
smul
Units.instStarModule
inv
smul_mem_skewAdjoint πŸ“–mathematicalAddSubgroup
AddCommGroup.toAddGroup
Ring.toAddCommGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”StarModule.star_smul
neg_smul
star_add_self πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Star.star
β€”add_comm
StarAddMonoid.star_add
star_star
star_eq πŸ“–mathematicalIsSelfAdjointStar.starβ€”β€”
star_iff πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
Star.star
β€”star_star
star_mul_self πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Star.star
β€”StarMul.star_mul
star_star
sub πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SubNegMonoid.toSubβ€”star_sub
star_eq
zero πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
β€”star_zero
zpow πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivInvMonoid.toZPowβ€”star_zpow
star_eq
zpowβ‚€ πŸ“–mathematicalIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
β€”star_zpowβ‚€
star_eq

IsStarNormal

Theorems

NameKindAssumesProvesValidatesDepends On
map πŸ“–mathematicalβ€”IsStarNormal
DFunLike.coe
β€”map_mul
StarHomClass.map_star
star_comm_self
neg πŸ“–mathematicalβ€”IsStarNormal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”star_neg
neg_mul_neg
star_comm_self'
one πŸ“–mathematicalβ€”IsStarNormal
MulOne.toMul
MulOneClass.toMulOne
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toOne
β€”star_one
one_add πŸ“–mathematicalβ€”IsStarNormal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
Distrib.toAdd
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Commute.isStarNormal_add
Commute.one_left
one
one_sub πŸ“–mathematicalβ€”IsStarNormal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”Commute.isStarNormal_sub
Commute.one_left
one
smul πŸ“–mathematicalβ€”IsStarNormalβ€”Commute.smul_right
Commute.smul_left
star_comm_self
StarModule.star_smul
star_comm_self πŸ“–mathematicalβ€”Commute
Star.star
β€”β€”
val_inv πŸ“–mathematicalβ€”IsStarNormal
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
InvolutiveStar.toStar
StarMul.toInvolutiveStar
Units.val
Units
Units.instInv
β€”star_comm_self
zero πŸ“–mathematicalβ€”IsStarNormal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”star_zero

IsUnit

Theorems

NameKindAssumesProvesValidatesDepends On
isSelfAdjoint_conjugate_iff πŸ“–mathematicalIsUnitIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Star.star
β€”mul_assoc
StarMul.star_mul
star_star
star
isSelfAdjoint_conjugate_iff' πŸ“–mathematicalIsUnitIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Star.star
β€”star_star
isSelfAdjoint_conjugate_iff
star

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
isSelfAdjoint πŸ“–mathematicalβ€”IsSelfAdjoint
instStarForall
β€”β€”

TrivialStar

Theorems

NameKindAssumesProvesValidatesDepends On
isStarNormal πŸ“–mathematicalβ€”IsStarNormal
InvolutiveStar.toStar
StarMul.toInvolutiveStar
β€”star_trivial
Commute.refl

(root)

Definitions

NameCategoryTheorems
IsSelfAdjoint πŸ“–MathDef
203 mathmath: ContinuousLinearMap.isSelfAdjoint_iff_isSymmetric, CFC.sqrt_eq_one_iff', CFC.posPart_one, nnnorm_cfcβ‚™_nnreal_le_iff, Matrix.IsHermitian.det_abs, CStarAlgebra.nonneg_iff_exists_isSelfAdjoint_and_eq_mul_self, CFC.posPart_natCast, IsSelfAdjoint.star_mul_self, CFC.tendsto_cfc_rpow_sub_one_log, Matrix.IsHermitian.cfc_eq, CFC.sq_sqrt, Unitization.real_cfcβ‚™_eq_cfc_inr, CFC.nnnorm_sqrt, LinearMap.isSelfAdjoint_toContinuousLinearMap_iff, CFC.sqrt_rpow, Matrix.PosSemidef.sqrt_eq_zero_iff, RCLike.is_real_TFAE, Matrix.IsHermitian.isSelfAdjoint, isSelfAdjoint_iff_isStarNormal_and_spectrumRestricts, CFC.negPart_algebraMap, cfcβ‚™Hom_nnreal_eq_restrict, Continuous.cfc_nnreal', RCLike.im_eq_zero_iff_isSelfAdjoint, LE.le.isSelfAdjoint, IsUnit.cfcSqrt, CFC.continuousOn_log, ContinuousOn.cfc_nnreal', IsGreatest.nnnorm_cfc_nnreal, IsSelfAdjoint.add_star_self, IsSelfAdjoint.mul_star_self, CFC.continuousOn_sqrt, IsSelfAdjoint.intCast, Matrix.PosSemidef.det_sqrt, Commute.cfc_real, Matrix.IsHermitian.charpoly_cfc_eq, nnnorm_cfcβ‚™_nnreal_lt, CFC.sqrt_eq_rpow, CStarAlgebra.nonneg_iff_isSelfAdjoint_and_negPart_eq_zero, cfc_real_eq_nnreal, Matrix.PosSemidef.posSemidef_sqrt, CStarAlgebra.isStrictlyPositive_iff_exists_isUnit_and_isSelfAdjoint_and_eq_mul_self, IsSelfAdjoint.cfc, LinearMap.IsSymmetric.isSelfAdjoint, CFC.posPart_algebraMap_nnreal, Matrix.PosSemidef.sqrt_eq_one_iff, Matrix.PosSemidef.sqrt_sq, CFC.sqrt_eq_one_iff, CStarAlgebra.norm_posPart_le, IsGreatest.nnnorm_cfcβ‚™_nnreal, Matrix.PosSemidef.eq_sqrt_iff_sq_eq, CFC.continuous_abs, continuousOn_cfc_nnreal, cfc_nnreal_eq_real, IsSelfAdjoint.log, CFC.abs_natCast, CStarAlgebra.isStrictlyPositive_iff_isStrictlyPositive_sqrt_and_eq_sqrt_mul_sqrt, IsIdempotentElem.isSelfAdjoint_iff_isStarNormal, IsSelfAdjoint.cfc_arg, LinearMap.IntrinsicStar.isSelfAdjoint_iff_map_star, Matrix.isHermitian_iff_isSelfAdjoint, ContinuousLinearMap.IsIdempotentElem.TFAE, Continuous.cfc_nnreal_of_mem_nhdsSet, Filter.IsIncreasingApproximateUnit.eventually_isSelfAdjoint, IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus, LinearMap.isSelfAdjoint_iff', IsSelfAdjoint.natCast, Continuous.cfcβ‚™_nnreal, LinearMap.IsPositive.isSelfAdjoint, Unitization.isSelfAdjoint_inr, Matrix.IntrinsicStar.isSelfAdjoint_toLin'_iff, ContinuousAt.cfcβ‚™_nnreal, nonneg_iff_isSelfAdjoint_and_spectrumRestricts, ContinuousOn.cfc_nnreal_of_mem_nhdsSet, CFC.abs_algebraMap, LinearMap.IsSymmetric.isSymmetric_smul_iff, IsStrictlyPositive.nnrpow, isSelfAdjoint_algebraMap_iff, CFC.monotoneOn_one_sub_one_add_inv_real, ContinuousWithinAt.cfcβ‚™_nnreal, isStarProjection_iff, QuasispectrumRestricts.isSelfAdjoint, CFC.continuousOn_nnrpow, IsUnit.isSelfAdjoint_conjugate_iff, selfAdjoint.isSelfAdjoint, range_cfcβ‚™_nnreal_eq_image_cfcβ‚™_real, Filter.Tendsto.cfcβ‚™_nnreal, IsUnit.cfcNNRpow, SpectrumRestricts.isSelfAdjoint, ContinuousOn.cfc_nnreal, nnnorm_cfcβ‚™_nnreal_lt_iff, IsSelfAdjoint.of_nonneg, ContinuousLinearMap.isSelfAdjoint_iff', isSelfAdjoint_starProjection, nnnorm_cfc_nnreal_lt, isSelfAdjoint_iff_isStarNormal_and_quasispectrumRestricts, IsSelfAdjoint.ratCast, IsStrictlyPositive.sqrt, Matrix.PosSemidef.isUnit_sqrt_iff, cfcβ‚™_real_eq_nnreal, nnnorm_cfc_nnreal_le, ContinuousOn.cfcβ‚™_nnreal_of_mem_nhdsSet, Continuous.cfc_nnreal, nnnorm_cfc_nnreal_le_iff, CFC.sqrt_sq, IsSelfAdjoint.star_iff, CFC.rpow_sqrt_nnreal, ContinuousLinearMap.isSelfAdjoint_toLinearMap_iff, LinearPMap.isSelfAdjoint_def, IsSelfAdjoint.instIsometricContinuousFunctionalCalculus, cfcHom_nnreal_eq_restrict, Matrix.PosSemidef.sq_sqrt, ContinuousOn.cfcβ‚™_nnreal', ContinuousLinearMap.IsIdempotentElem.isPositive_iff_isSelfAdjoint, CFC.abs_ofNat, CFC.negPart_one, Matrix.PosSemidef.inv_sqrt, CFC.abs_algebraMap_nnreal, IsStarProjection.isSelfAdjoint, CFC.nnnorm_rpow, Continuous.cfcβ‚™_nnreal_of_mem_nhdsSet, CStarAlgebra.isStrictlyPositive_iff_isUnit_sqrt_and_eq_sqrt_mul_sqrt, cfc_comp_norm, CFC.abs_intCast, apply_le_nnnorm_cfc_nnreal, range_cfc_nnreal_eq_image_cfc_real, ContinuousLinearMap.isPositive_def', IsSelfAdjoint.zero, isSelfAdjoint_conjugate_iff_of_isUnit', CFC.exists_measure_nnrpow_eq_integral_cfcβ‚™_rpowIntegrand₀₁, CFC.spectrum_abs, LinearMap.IntrinsicStar.isSelfAdjoint_iff_toMatrix', IsSelfAdjoint.star_add_self, CFC.sqrt_eq_cfc, Filter.Tendsto.cfc_nnreal, IsSelfAdjoint.instContinuousFunctionalCalculus, continuousOn_cfcβ‚™_nnreal, CFC.abs_sq, LinearMap.isSelfAdjoint_iff_map_star, LinearMap.isSymmetric_iff_isSelfAdjoint, IsStrictlyPositive.isSelfAdjoint, ContinuousLinearMap.isPositive_iff', CStarAlgebra.isStrictlyPositive_TFAE, CStarAlgebra.isStrictlyPositive_iff_isSelfAdjoint_and_spectrum_pos, isSelfAdjoint_iff, CStarAlgebra.norm_negPart_le, cfcβ‚™_nnreal_eq_real, CFC.sqrt_algebraMap, CFC.posPart_algebraMap, CFC.sqrt_one, CFC.nnrpow_eq_cfcβ‚™_real, IntrinsicStar.StarHomClass.isSelfAdjoint, IsSelfAdjoint.ofNat, nonneg_iff_isSelfAdjoint_and_quasispectrumRestricts, CFC.negPart_def, CFC.sqrt_rpow_nnreal, nnnorm_cfc_nnreal_lt_iff, IsSelfAdjoint.nnratCast, CFC.norm_rpow, isSelfAdjoint_smul_of_mem_skewAdjoint, ContinuousLinearMap.IsIdempotentElem.isSelfAdjoint_iff_isStarNormal, MonotoneOn.nnnorm_cfc, ContinuousOn.cfcβ‚™_nnreal, CFC.posPart_def, CFC.nnrpow_eq_rpow, CFC.cfcβ‚™_rpowIntegrand₀₁_eq_cfcβ‚™_rpowIntegrand₀₁_one, Complex.im_eq_zero_iff_isSelfAdjoint, continuousOn_cfc_nnreal_setProd, CFC.abs_one, CStarAlgebra.nonneg_TFAE, Matrix.PosSemidef.sqrt_mul_self, Matrix.isHermitian_diagonal_iff, StarHomClass.isSelfAdjoint, CFC.isUnit_nnrpow_iff, CFC.monotoneOn_cfcβ‚™_rpowIntegrand₀₁, IsSelfAdjoint.all, ContinuousAt.cfc_nnreal, IsSelfAdjoint.one, Pi.isSelfAdjoint, ContinuousWithinAt.cfc_nnreal, IsSelfAdjoint.instNonUnitalIsometricContinuousFunctionalCalculus, ContinuousLinearMap.IsPositive.isSelfAdjoint, nnnorm_cfcβ‚™_nnreal_le, CFC.sqrt_eq_real_sqrt, apply_le_nnnorm_cfcβ‚™_nnreal, continuousOn_cfcβ‚™_nnreal_setProd, CFC.norm_sqrt, CFC.continuousOn_rpow, MonotoneOn.nnnorm_cfcβ‚™, CFC.nnnorm_nnrpow, Matrix.PosDef.posDef_sqrt, CFC.norm_nnrpow, Commute.cfcβ‚™_real, Matrix.IsHermitian.instContinuousFunctionalCalculus, IsUnit.isSelfAdjoint_conjugate_iff', CStarModule.isSelfAdjoint_inner_self, Matrix.PosSemidef.sqrt_eq_iff_eq_sq, CFC.rpow_eq_cfc_real, isSelfAdjoint_map, Continuous.cfcβ‚™_nnreal', CFC.isUnit_sqrt_iff, isSelfAdjoint_conjugate_iff_of_isUnit, CFC.rpow_sqrt, IsSelfAdjoint.cfcβ‚™
IsStarNormal πŸ“–CompData
53 mathmath: IsStarNormal.instNonUnitalContinuousFunctionalCalculus, IsStarNormal.one_sub, skewAdjoint.isStarNormal_of_mem, ContinuousLinearMap.isStarNormal_iff_norm_eq_adjoint, cfc_complex_eq_real, isSelfAdjoint_iff_isStarNormal_and_spectrumRestricts, skewAdjoint.instIsStarNormalValMemAddSubgroup, IsStarNormal.cfcβ‚™_map, isStarNormal_iff, IsStarNormal.neg, IsStarNormal.val_inv, IsStarNormal.zero, cfcβ‚™_real_eq_complex, IsIdempotentElem.isSelfAdjoint_iff_isStarNormal, IsSelfAdjoint.cfc_arg, ContinuousLinearMap.IsIdempotentElem.TFAE, Commute.isStarNormal_add, cfcHom_real_eq_restrict, TrivialStar.isStarNormal, inr_comp_cfcβ‚™Hom_eq_cfcβ‚™Aux, Unitary.instIsStarNormal, IsSelfAdjoint.isStarNormal, Commute.isStarNormal_sub, QuaternionAlgebra.instIsStarNormal, isSelfAdjoint_iff_isStarNormal_and_quasispectrumRestricts, Unitary.coe_isStarNormal, Quaternion.instIsStarNormal, IsStarNormal.map, cfcβ‚™Hom_real_eq_restrict, IsStarNormal.instContinuousFunctionalCalculus, IsStarNormal.one, IsStarNormal.cfc_map, Unitization.instIsStarNormal, IsStarNormal.star, ContinuousLinearMap.isStarProjection_iff_isIdempotentElem_and_isStarNormal, unitary_iff_isStarNormal_and_spectrum_subset_unitary, IsStarNormal.instNonUnitalIsometricContinuousFunctionalCalculus, isStarProjection_iff_isIdempotentElem_and_isStarNormal, Unitization.complex_cfcβ‚™_eq_cfc_inr, IsStarNormal.smul, IsStarNormal.of_inr, isStarNormal_of_mem_unitary, cfc_real_eq_complex, ContinuousLinearMap.IsIdempotentElem.isSelfAdjoint_iff_isStarNormal, IsStarNormal.one_add, IsStarProjection.isStarNormal, selfAdjoint.isStarNormal, IsStarNormal.instIsometricContinuousFunctionalCalculus, Unitary.argSelfAdjoint_coe, CommMonoid.isStarNormal, cfcHom_eq_of_isStarNormal, cfcβ‚™_complex_eq_real, Unitization.isStarNormal_inr
selfAdjoint πŸ“–CompOp
90 mathmath: Unitary.openPartialHomeomorph_source, continuous_decomposeProdAdjoint, StarModule.decomposeProdAdjointL_symm_apply, StarModule.selfAdjointPart_add_skewAdjointPart, unitary.norm_expUnitary_smul_argSelfAdjoint_sub_one_le, Complex.coe_realPart, selfAdjoint.val_div, Unitary.norm_expUnitary_smul_argSelfAdjoint_sub_one_le, realPart_idem, realPart_ofReal, Unitary.mem_pathComponentOne_iff, imaginaryPart_I_smul, selfAdjoint.expUnitaryPathToOne_apply, Unitary.continuousOn_argSelfAdjoint, selfAdjoint.val_mul, selfAdjointPart_comp_subtype_skewAdjoint, IsSelfAdjoint.selfAdjointPart_apply, StarModule.decomposeProdAdjointL_apply, selfAdjoint.val_one, selfAdjointPart_comp_subtype_selfAdjoint, Unitary.openPartialHomeomorph_symm_apply, selfAdjoint.instNontrivialSubtypeMemAddSubgroup, selfAdjoint.imaginaryPart_coe, selfAdjoint.val_zpow, continuous_decomposeProdAdjoint_symm, realPart.norm_le, selfAdjoint.expUnitary_zero, LinearMap.IsSymmetric.coe_toSelfAdjoint, realPart_add_I_smul_imaginaryPart, selfAdjoint.continuous_expUnitary, selfAdjoint.star_val_eq, StarModule.decomposeProdAdjoint_symm_apply, LinearMap.IsSymmetric.toSelfAdjoint_apply, Complex.selfAdjointEquiv_apply, CStarAlgebra.linear_combination_nonneg, CStarAlgebra.norm_smul_two_inv_smul_add_four_unitary, star_mul_self_add_self_mul_star, imaginaryPart.norm_le, realPart_comp_subtype_selfAdjoint, unitary.norm_argSelfAdjoint, skewAdjoint.negISMul_apply_coe, imaginaryPart_realPart, imaginaryPart_eq_neg_I_smul_skewAdjointPart, selfAdjoint.isSelfAdjoint, span_selfAdjoint, realPart_I_smul, imaginaryPart_apply_coe, Unitary.openPartialHomeomorph_target, imaginaryPart_comp_subtype_selfAdjoint, selfAdjoint.val_inv, selfAdjoint.val_smul, realPart_surjective, imaginaryPart_surjective, selfAdjoint.val_pow, selfAdjoint.realPart_coe, continuous_selfAdjointPart, selfAdjoint.val_qsmul, selfAdjointPartL_apply_coe, Complex.coe_selfAdjointEquiv, imaginaryPart_ofReal, IsSelfAdjoint.coe_selfAdjointPart_apply, selfAdjoint.val_ratCast, Complex.selfAdjointEquiv_symm_apply, selfAdjointPart_apply_coe, realPart_imaginaryPart, selfAdjoint.mem_iff, skewAdjointPart_eq_I_smul_imaginaryPart, selfAdjoint.val_nnratCast, selfAdjoint.val_re_map_spectrum, imaginaryPart_imaginaryPart, imaginaryPart_smul, Unitary.norm_argSelfAdjoint, realPart_apply_coe, IsSelfAdjoint.coe_realPart, realPart_smul, unitary.norm_argSelfAdjoint_le_pi, Unitary.norm_argSelfAdjoint_le_pi, selfAdjoint.isStarNormal, Unitary.openPartialHomeomorph_apply, Unitary.argSelfAdjoint_coe, skewAdjoint.I_smul_neg_I, IsSelfAdjoint.imaginaryPart, unitary.mem_pathComponentOne_iff, Unitary.path_apply, unitary.two_mul_one_sub_cos_norm_argSelfAdjoint, selfAdjoint.expUnitary_coe, selfAdjoint.val_nnqsmul, StarModule.decomposeProdAdjoint_apply, unitary.continuousOn_argSelfAdjoint, Unitary.two_mul_one_sub_cos_norm_argSelfAdjoint
skewAdjoint πŸ“–CompOp
21 mathmath: continuous_decomposeProdAdjoint, StarModule.decomposeProdAdjointL_symm_apply, StarModule.selfAdjointPart_add_skewAdjointPart, StarModule.decomposeProdAdjointL_apply, skewAdjoint.mem_iff, skewAdjoint.val_smul, skewAdjoint.instIsStarNormalValMemAddSubgroup, continuous_decomposeProdAdjoint_symm, IsSelfAdjoint.skewAdjointPart_apply, StarModule.decomposeProdAdjoint_symm_apply, skewAdjoint.negISMul_apply_coe, imaginaryPart_eq_neg_I_smul_skewAdjointPart, skewAdjointPart_comp_subtype_selfAdjoint, skewAdjoint.star_val_eq, skewAdjointPart_apply_coe, skewAdjointPartL_apply_coe, skewAdjointPart_eq_I_smul_imaginaryPart, skewAdjoint.I_smul_neg_I, skewAdjointPart_comp_subtype_skewAdjoint, continuous_skewAdjointPart, StarModule.decomposeProdAdjoint_apply

Theorems

NameKindAssumesProvesValidatesDepends On
isSelfAdjoint_conjugate_iff_of_isUnit πŸ“–mathematicalIsUnitIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Star.star
β€”IsUnit.isSelfAdjoint_conjugate_iff
isSelfAdjoint_conjugate_iff_of_isUnit' πŸ“–mathematicalIsUnitIsSelfAdjoint
InvolutiveStar.toStar
StarMul.toInvolutiveStar
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Star.star
β€”IsUnit.isSelfAdjoint_conjugate_iff'
isSelfAdjoint_iff πŸ“–mathematicalβ€”IsSelfAdjoint
Star.star
β€”β€”
isSelfAdjoint_map πŸ“–mathematicalβ€”IsSelfAdjoint
DFunLike.coe
β€”IsSelfAdjoint.map
IsSelfAdjoint.all
isSelfAdjoint_smul_of_mem_skewAdjoint πŸ“–mathematicalAddSubgroup
AddCommGroup.toAddGroup
Ring.toAddCommGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”StarModule.star_smul
neg_smul_neg
isStarNormal_iff πŸ“–mathematicalβ€”IsStarNormal
Commute
Star.star
β€”β€”
star_comm_self' πŸ“–mathematicalβ€”Star.starβ€”IsStarNormal.star_comm_self

selfAdjoint

Definitions

NameCategoryTheorems
instCommRingSubtypeMemAddSubgroup πŸ“–CompOp
3 mathmath: Complex.selfAdjointEquiv_apply, Complex.coe_selfAdjointEquiv, Complex.selfAdjointEquiv_symm_apply
instDistribMulActionSubtypeMemAddSubgroupOfStarModule πŸ“–CompOpβ€”
instDivSubtypeMemAddSubgroup πŸ“–CompOp
1 mathmath: val_div
instField πŸ“–CompOpβ€”
instInhabitedSubtypeMemAddSubgroup πŸ“–CompOpβ€”
instIntCastSubtypeMemAddSubgroup πŸ“–CompOpβ€”
instInvSubtypeMemAddSubgroup πŸ“–CompOp
1 mathmath: val_inv
instModuleSubtypeMemAddSubgroupOfStarModule πŸ“–CompOp
49 mathmath: continuous_decomposeProdAdjoint, StarModule.decomposeProdAdjointL_symm_apply, StarModule.selfAdjointPart_add_skewAdjointPart, Complex.coe_realPart, realPart_idem, realPart_ofReal, imaginaryPart_I_smul, selfAdjointPart_comp_subtype_skewAdjoint, IsSelfAdjoint.selfAdjointPart_apply, StarModule.decomposeProdAdjointL_apply, selfAdjointPart_comp_subtype_selfAdjoint, imaginaryPart_coe, continuous_decomposeProdAdjoint_symm, realPart.norm_le, realPart_add_I_smul_imaginaryPart, StarModule.decomposeProdAdjoint_symm_apply, Complex.selfAdjointEquiv_apply, CStarAlgebra.linear_combination_nonneg, CStarAlgebra.norm_smul_two_inv_smul_add_four_unitary, star_mul_self_add_self_mul_star, imaginaryPart.norm_le, realPart_comp_subtype_selfAdjoint, skewAdjoint.negISMul_apply_coe, imaginaryPart_realPart, imaginaryPart_eq_neg_I_smul_skewAdjointPart, realPart_I_smul, realPart_unitarySelfAddISMul, imaginaryPart_apply_coe, imaginaryPart_comp_subtype_selfAdjoint, realPart_surjective, imaginaryPart_surjective, realPart_coe, continuous_selfAdjointPart, selfAdjointPartL_apply_coe, Complex.coe_selfAdjointEquiv, imaginaryPart_ofReal, IsSelfAdjoint.coe_selfAdjointPart_apply, Complex.selfAdjointEquiv_symm_apply, selfAdjointPart_apply_coe, realPart_imaginaryPart, skewAdjointPart_eq_I_smul_imaginaryPart, imaginaryPart_imaginaryPart, imaginaryPart_smul, realPart_apply_coe, IsSelfAdjoint.coe_realPart, realPart_smul, skewAdjoint.I_smul_neg_I, IsSelfAdjoint.imaginaryPart, StarModule.decomposeProdAdjoint_apply
instMulActionSubtypeMemAddSubgroupOfStarModule πŸ“–CompOpβ€”
instMulSubtypeMemAddSubgroup πŸ“–CompOp
1 mathmath: val_mul
instNNRatCast πŸ“–CompOp
1 mathmath: val_nnratCast
instNatCastSubtypeMemAddSubgroup πŸ“–CompOpβ€”
instOneSubtypeMemAddSubgroup πŸ“–CompOp
1 mathmath: val_one
instPowSubtypeMemAddSubgroupInt πŸ“–CompOp
1 mathmath: val_zpow
instPowSubtypeMemAddSubgroupNat πŸ“–CompOp
1 mathmath: val_pow
instRatCast πŸ“–CompOp
1 mathmath: val_ratCast
instSMulNNRat πŸ“–CompOp
1 mathmath: val_nnqsmul
instSMulRat πŸ“–CompOp
1 mathmath: val_qsmul
instSMulSubtypeMemAddSubgroupOfStarModule πŸ“–CompOp
7 mathmath: unitary.norm_expUnitary_smul_argSelfAdjoint_sub_one_le, Unitary.norm_expUnitary_smul_argSelfAdjoint_sub_one_le, expUnitaryPathToOne_apply, val_smul, imaginaryPart_smul, realPart_smul, Unitary.path_apply

Theorems

NameKindAssumesProvesValidatesDepends On
instNontrivialSubtypeMemAddSubgroup πŸ“–mathematicalβ€”Nontrivial
AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”zero_ne_one
NeZero.one
isSelfAdjoint πŸ“–mathematicalβ€”IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
β€”star_val_eq
isStarNormal πŸ“–mathematicalβ€”IsStarNormal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
AddSubgroup
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
β€”IsSelfAdjoint.isStarNormal
Subtype.prop
mem_iff πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”AddSubgroup.mem_carrier
star_val_eq πŸ“–mathematicalβ€”Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
β€”Subtype.prop
val_div πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
instDivSubtypeMemAddSubgroup
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
β€”β€”
val_inv πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
instInvSubtypeMemAddSubgroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Field.toSemifield
β€”β€”
val_mul πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
NonUnitalNonAssocRing.toAddCommGroup
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
instMulSubtypeMemAddSubgroup
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”β€”
val_nnqsmul πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
NNRat
instSMulNNRat
NNRat.smulDivisionSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”β€”
val_nnratCast πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
NNRat.cast
instNNRatCast
DivisionRing.toNNRatCast
β€”β€”
val_one πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
instOneSubtypeMemAddSubgroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
β€”β€”
val_pow πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
instPowSubtypeMemAddSubgroupNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
β€”β€”
val_qsmul πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
instSMulRat
Rat.smulDivisionRing
β€”β€”
val_ratCast πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
instRatCast
DivisionRing.toRatCast
β€”β€”
val_smul πŸ“–mathematicalβ€”AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
instSMulSubtypeMemAddSubgroupOfStarModule
β€”β€”
val_zpow πŸ“–mathematicalβ€”AddSubgroup
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
AddSubgroup.instSetLike
selfAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
instPowSubtypeMemAddSubgroupInt
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
β€”β€”

skewAdjoint

Definitions

NameCategoryTheorems
instDistribMulActionSubtypeMemAddSubgroupOfStarModule πŸ“–CompOpβ€”
instInhabitedSubtypeMemAddSubgroup πŸ“–CompOpβ€”
instModuleSubtypeMemAddSubgroupOfStarModule πŸ“–CompOp
17 mathmath: continuous_decomposeProdAdjoint, StarModule.decomposeProdAdjointL_symm_apply, StarModule.selfAdjointPart_add_skewAdjointPart, StarModule.decomposeProdAdjointL_apply, continuous_decomposeProdAdjoint_symm, IsSelfAdjoint.skewAdjointPart_apply, StarModule.decomposeProdAdjoint_symm_apply, negISMul_apply_coe, imaginaryPart_eq_neg_I_smul_skewAdjointPart, skewAdjointPart_comp_subtype_selfAdjoint, skewAdjointPart_apply_coe, skewAdjointPartL_apply_coe, skewAdjointPart_eq_I_smul_imaginaryPart, I_smul_neg_I, skewAdjointPart_comp_subtype_skewAdjoint, continuous_skewAdjointPart, StarModule.decomposeProdAdjoint_apply
instSMulSubtypeMemAddSubgroupOfStarModule πŸ“–CompOp
1 mathmath: val_smul

Theorems

NameKindAssumesProvesValidatesDepends On
conjugate πŸ“–mathematicalAddSubgroup
AddCommGroup.toAddGroup
Ring.toAddCommGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”mul_assoc
StarMul.star_mul
star_star
mem_iff
mul_neg
neg_mul
conjugate' πŸ“–mathematicalAddSubgroup
AddCommGroup.toAddGroup
Ring.toAddCommGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”mul_assoc
StarMul.star_mul
mem_iff
mul_neg
star_star
neg_mul
instIsStarNormalValMemAddSubgroup πŸ“–mathematicalβ€”IsStarNormal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
AddSubgroup
AddCommGroup.toAddGroup
Ring.toAddCommGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
β€”isStarNormal_of_mem
SetLike.coe_mem
isStarNormal_of_mem πŸ“–mathematicalAddSubgroup
AddCommGroup.toAddGroup
Ring.toAddCommGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
StarRing.toStarAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsStarNormal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”β€”
mem_iff πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”AddSubgroup.mem_carrier
smul_mem πŸ“–mathematicalAddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”mem_iff
StarModule.star_smul
TrivialStar.star_trivial
smul_neg
star_val_eq πŸ“–mathematicalβ€”Star.star
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddSubgroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”Subtype.prop
val_smul πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
AddSubgroup.instSetLike
skewAdjoint
instSMulSubtypeMemAddSubgroupOfStarModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”β€”

---

← Back to Index