Documentation Verification Report

StarAlgHom

📁 Source: Mathlib/Algebra/Star/StarAlgHom.lean

Statistics

MetricCount
DefinitionsNonUnitalAlgEquivClass, NonUnitalStarAlgHom, comp, copy, fst, id, inl, inr, instFunLike, instInhabited, instMonoid, instMonoidWithZero, instZero, prod, prodEquiv, restrictScalars, snd, toNonUnitalAlgHom, instCoeTCNonUnitalStarAlgHomOfStarHomClass, toNonUnitalStarAlgHom, evalNonUnitalStarAlgHom, evalStarAlgHom, StarAlgEquiv, symm_apply, aut, instEquivLike, instFunLike, instInhabited, ofAlgEquiv, ofBijective, ofStarAlgHom, refl, aux, toAlgEquiv, toStarRingEquiv, trans, instCoeHead, toStarAlgEquiv, StarAlgHom, comp, copy, fst, id, instFunLike, instInhabited, instMonoid, ofId, prod, prodEquiv, snd, toAlgHom, toNonUnitalStarAlgHom, instCoeTCStarAlgHom, toStarAlgHom, «term_→⋆ₐ[_]_», «term_→⋆ₐ_», «term_→⋆ₙₐ[_]_», «term_→⋆ₙₐ_», «term_≃⋆ₐ[_]_», «term_≃⋆ₐ_»
60
TheoremstoMulActionSemiHomClass, toRingEquivClass, coe_coe, coe_comp, coe_copy, coe_id, coe_inl, coe_inr, coe_mk, coe_mk', coe_one, coe_prod, coe_restrictScalars, coe_restrictScalars', coe_toNonUnitalAlgHom, coe_zero, comp_apply, comp_assoc, comp_id, copy_eq, ext, ext_iff, fst_apply, fst_prod, id_comp, inl_apply, inr_apply, instNonUnitalAlgHomClass, instStarHomClass, map_star', mk_coe, one_apply, prodEquiv_apply, prodEquiv_symm_apply, prod_apply, prod_fst_snd, restrictScalars_apply, restrictScalars_injective, snd_apply, snd_prod, zero_apply, instNonUnitalStarRingHomClassOfStarHomClass, evalNonUnitalStarAlgHom_apply, evalStarAlgHom_apply, apply_symm_apply, aut_inv, aut_mul, aut_one, coe_mk, coe_ofBijective, coe_pow, coe_refl, coe_symm_toAlgEquiv, coe_toAlgEquiv, coe_trans, ext, ext_iff, instNonUnitalAlgEquivClass, instStarRingEquivClass, invFun_eq_symm, leftInverse_symm, map_smul', mk_coe, mul_apply, ofAlgEquiv_apply, ofAlgEquiv_symm, ofAlgEquiv_toAlgEquiv, ofBijective_apply, ofStarAlgHom_apply, ofStarAlgHom_symm_apply, one_apply, refl_symm, rightInverse_symm, symm_apply_apply, symm_bijective, symm_mk, symm_symm, symm_to_ringEquiv, symm_trans_apply, toAlgEquiv_injective, toAlgEquiv_ofAlgEquiv, toAlgEquiv_refl, toAlgEquiv_symm, toAlgEquiv_trans, toRingEquiv_eq_coe, toRingEquiv_symm, toStarRingEquiv_eq_coe, toStarRingEquiv_symm, to_ringEquiv_symm, trans_apply, coe_coe, coe_comp, coe_copy, coe_id, coe_mk, coe_mk', coe_prod, coe_toAlgHom, coe_toNonUnitalStarAlgHom, comp_apply, comp_assoc, comp_id, copy_eq, ext, ext_iff, fst_apply, fst_prod, id_comp, instAlgHomClass, instStarHomClass, map_star', mk_coe, ofId_apply, prodEquiv_apply, prodEquiv_symm_apply, prod_apply, prod_fst_snd, snd_apply, snd_prod, instAlgEquivClassOfNonUnitalAlgEquivClass, instNonUnitalAlgHomClassOfNonUnitalAlgEquivClass
121
Total181

NonUnitalAlgEquivClass

Theorems

NameKindAssumesProvesValidatesDepends On
toMulActionSemiHomClass 📖mathematicalMulActionSemiHomClass
EquivLike.toFunLike
toRingEquivClass 📖mathematicalRingEquivClass

NonUnitalStarAlgHom

Definitions

NameCategoryTheorems
comp 📖CompOp
16 mathmath: id_comp, Unitization.starAlgHom_ext_iff, prodEquiv_symm_apply, coe_comp, comp_assoc, range_comp_le_range, NonUnitalStarSubalgebra.map_map, comp_apply, inr_comp_cfcₙHom_eq_cfcₙAux, comp_id, Unitization.starMap_comp, fst_prod, subtype_comp_codRestrict, snd_prod, Unitization.starLift_symm_apply, range_comp
copy 📖CompOp
2 mathmath: copy_eq, coe_copy
fst 📖CompOp
4 mathmath: prodEquiv_symm_apply, prod_fst_snd, fst_apply, fst_prod
id 📖CompOp
6 mathmath: id_comp, Unitization.starMap_id, comp_id, NonUnitalStarAlgebra.range_id, coe_id, NonUnitalStarSubalgebra.map_id
inl 📖CompOp
2 mathmath: inl_apply, coe_inl
inr 📖CompOp
2 mathmath: inr_apply, coe_inr
instFunLike 📖CompOp
104 mathmath: cfcₙ_def, continuous_cfcₙHomSuperset_left, norm_cfcₙHom, cfcₙHom_mono, NonUnitalIsometricContinuousFunctionalCalculus.isometric, cfcₙHom_apply_mem_elemental, coe_codRestrict, inl_apply, isClosedEmbedding_cfcₙAux, coe_restrictScalars, realContinuousMapZeroOfNNReal_apply_comp_toReal, coe_comp, Unitization.starLift_symm_apply_apply, Unitization.starLift_apply_apply, range_comp_le_range, instStarHomClass, injective_codRestrict, cfcₙ_apply_mkD, cfcₙHom_id, range_cfcₙHom, NonUnitalStarSubalgebra.map_map, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, NonUnitalStarSubalgebra.val_inclusion, cfcₙHom_integral, comp_apply, cfcₙAux_id, isometry_cfcₙHom, cfcₙHom_predicate, Unitization.starLift_range, prod_apply, inr_apply, Unitization.inrNonUnitalStarAlgHom_apply, NonUnitalStarSubalgebra.toNonUnitalSubalgebra_subtype, NonUnitalStarSubalgebra.range_val, Commute.cfcₙHom, Unitization.starMap_inr, NonUnitalStarSubalgebra.inclusion_mk, range_cfcₙ_eq_range_cfcₙHom, NonUnitalStarSubalgebraClass.coe_subtype, restrictScalars_apply, ContinuousMapZero.nonUnitalStarAlgHom_precomp_apply, NonUnitalStarSubalgebra.iSupLift_inclusion, coe_toNonUnitalAlgHom, coe_restrictScalars', snd_apply, coe_zero, cfcₙHom_isClosedEmbedding, cfcₙHom_le_iff, realContinuousMapZeroOfNNReal_apply, coe_one, cfcₙHom_eq_cfcₙ_extend, fst_apply, ContinuousMapZero.toContinuousMapHom_toNNReal, NonUnitalStarSubalgebra.iSupLift_of_mem, DoubleCentralizer.coeHom_apply, cfcₙHom_map_quasispectrum, spec_cfcₙAux, coe_coe, cfcₙHomSuperset_id, nnnorm_cfcₙHom, NonUnitalStarSubalgebra.inclusion_right, NonUnitalStarSubalgebraClass.subtype_injective, isClosedEmbedding_cfcₙHom_of_cfcHom, IsSelfAdjoint.commute_cfcₙHom, QuasispectrumRestricts.nonUnitalStarAlgHom_apply, Unitization.starMap_apply, NonUnitalContinuousFunctionalCalculus.exists_cfc_of_predicate, StarAlgHom.coe_toNonUnitalStarAlgHom, ContinuousMapZero.toContinuousMapHom_apply, NonUnitalStarSubalgebra.toSubring_subtype, cfcₙAux_mem_range_inr, Pi.evalNonUnitalStarAlgHom_apply, one_apply, cfcₙHom_continuous, cfcₙHomSuperset_continuous, cfcₙ_apply_pi, coe_prod, Unitization.inrRangeEquiv_apply_coe, NonUnitalStarAlgebra.range_id, coe_mk', NonUnitalStarSubalgebra.inclusion_injective, cfcₙL_apply, coe_inr, Unitization.starLift_range_le, coe_mk, coe_inl, ext_iff, cfcₙHom_of_cfcHom_map_quasispectrum, coe_id, cfcₙHomSuperset_apply, cfcₙ_apply, ContinuousMapZero.coe_toContinuousMapHom, NonUnitalStarSubalgebraClass.subtype_apply, Unitization.inrRangeEquiv_symm_apply, NonUnitalStarSubalgebra.iSupLift_mk, cfcₙHom_nonneg_iff, CStarMatrix.mapₙₐ_apply, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, NonUnitalStarSubalgebra.inclusion_self, NonUnitalStarSubalgebra.map_id, zero_apply, NonUnitalStarSubalgebra.inclusion_inclusion, instNonUnitalAlgHomClass, range_comp
instInhabited 📖CompOp
instMonoid 📖CompOp
3 mathmath: prod_fst_snd, coe_one, one_apply
instMonoidWithZero 📖CompOp
instZero 📖CompOp
2 mathmath: coe_zero, zero_apply
prod 📖CompOp
6 mathmath: prod_fst_snd, prod_apply, prodEquiv_apply, fst_prod, coe_prod, snd_prod
prodEquiv 📖CompOp
2 mathmath: prodEquiv_symm_apply, prodEquiv_apply
restrictScalars 📖CompOp
4 mathmath: coe_restrictScalars, restrictScalars_injective, restrictScalars_apply, coe_restrictScalars'
snd 📖CompOp
4 mathmath: prodEquiv_symm_apply, prod_fst_snd, snd_apply, snd_prod
toNonUnitalAlgHom 📖CompOp
5 mathmath: coe_toNonUnitalAlgHom, PositiveLinearMap.gnsStarAlgHom_apply, Unitization.starLift_apply, Pi.evalStarAlgHom_apply, map_star'

Theorems

NameKindAssumesProvesValidatesDepends On
coe_coe 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
NonUnitalStarAlgHomClass.toNonUnitalStarAlgHom
coe_comp 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
comp
coe_copy 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
copy
coe_id 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
id
coe_inl 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
Prod.instStar
instFunLike
inl
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
coe_inr 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
Prod.instStar
instFunLike
inr
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
coe_mk 📖mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MonoidHom.id
MulActionHom.toFun
AddZero.toAdd
DistribMulActionHom.toMulActionHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalAlgHom.toDistribMulActionHom
Star.star
NonUnitalStarAlgHom
instFunLike
coe_mk' 📖mathematicalMulActionHom.toFun
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MonoidHom.id
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DistribMulActionHom.toMulActionHom
NonUnitalAlgHom.toDistribMulActionHom
Star.star
NonUnitalStarAlgHom
instFunLike
NonUnitalAlgHom
NonUnitalAlgHom.instFunLike_1
coe_one 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
coe_prod 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instStar
instFunLike
prod
Pi.prod
coe_restrictScalars 📖mathematicalNonUnitalRingHomClass.toNonUnitalRingHom
NonUnitalStarAlgHom
instFunLike
NonUnitalAlgHomClass.toNonUnitalRingHomClass
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
instNonUnitalAlgHomClass
restrictScalars
NonUnitalAlgHomClass.toNonUnitalRingHomClass
instNonUnitalAlgHomClass
coe_restrictScalars' 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
restrictScalars
coe_toNonUnitalAlgHom 📖mathematicalDFunLike.coe
NonUnitalAlgHom
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
NonUnitalAlgHom.instFunLike_1
toNonUnitalAlgHom
NonUnitalStarAlgHom
instFunLike
coe_zero 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
instZero
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
comp_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
comp
comp_assoc 📖mathematicalcomp
comp_id 📖mathematicalcomp
id
ext
copy_eq 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
copyDFunLike.ext'
ext 📖DFunLike.coe
NonUnitalStarAlgHom
instFunLike
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
ext
fst_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instStar
instFunLike
fst
fst_prod 📖mathematicalcomp
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instStar
fst
prod
ext
id_comp 📖mathematicalcomp
id
ext
inl_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
Prod.instStar
instFunLike
inl
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
inr_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
Prod.instStar
instFunLike
inr
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instNonUnitalAlgHomClass 📖mathematicalNonUnitalAlgHomClass
NonUnitalStarAlgHom
instFunLike
MulActionHom.map_smul'
DistribMulActionHom.map_add'
DistribMulActionHom.map_zero'
NonUnitalAlgHom.map_mul'
instStarHomClass 📖mathematicalStarHomClass
NonUnitalStarAlgHom
instFunLike
map_star'
map_star' 📖mathematicalMulActionHom.toFun
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MonoidHom.id
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DistribMulActionHom.toMulActionHom
NonUnitalAlgHom.toDistribMulActionHom
toNonUnitalAlgHom
Star.star
mk_coe 📖DFunLike.coe
NonUnitalStarAlgHom
instFunLike
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.instFunLike
MonoidHom.id
MulActionHom.toFun
AddZero.toAdd
DistribMulActionHom.toMulActionHom
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalAlgHom.toDistribMulActionHom
Star.star
ext
one_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
prodEquiv_apply 📖mathematicalDFunLike.coe
Equiv
NonUnitalStarAlgHom
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instStar
EquivLike.toFunLike
Equiv.instEquivLike
prodEquiv
prod
prodEquiv_symm_apply 📖mathematicalDFunLike.coe
Equiv
NonUnitalStarAlgHom
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instStar
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodEquiv
comp
fst
snd
prod_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instStar
instFunLike
prod
prod_fst_snd 📖mathematicalprod
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instStar
fst
snd
NonUnitalStarAlgHom
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
DFunLike.coe_injective
Pi.prod_fst_snd
restrictScalars_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
instFunLike
restrictScalars
restrictScalars_injective 📖mathematicalNonUnitalStarAlgHom
restrictScalars
ext
DFunLike.congr_fun
snd_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instStar
instFunLike
snd
snd_prod 📖mathematicalcomp
Prod.instNonUnitalNonAssocSemiring
Prod.distribMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Prod.instStar
snd
prod
ext
zero_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass

NonUnitalStarAlgHomClass

Definitions

NameCategoryTheorems
instCoeTCNonUnitalStarAlgHomOfStarHomClass 📖CompOp
toNonUnitalStarAlgHom 📖CompOp
4 mathmath: Unitization.starAlgHom_ext_iff, NonUnitalStarAlgHom.coe_coe, QuasispectrumRestricts.nonUnitalStarAlgHom_apply, NonUnitalStarAlgHom.subtype_comp_codRestrict

Theorems

NameKindAssumesProvesValidatesDepends On
instNonUnitalStarRingHomClassOfStarHomClass 📖mathematicalNonUnitalStarRingHomClass
NonUnitalAlgHomClass.toNonUnitalRingHomClass
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
NonUnitalAlgHomClass.toNonUnitalRingHomClass

Pi

Definitions

NameCategoryTheorems
evalNonUnitalStarAlgHom 📖CompOp
2 mathmath: evalNonUnitalStarAlgHom_apply, evalStarAlgHom_apply
evalStarAlgHom 📖CompOp
1 mathmath: evalStarAlgHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
evalNonUnitalStarAlgHom_apply 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
nonUnitalNonAssocSemiring
distribMulAction
AddCommMonoid.toAddMonoid
instStarForall
NonUnitalStarAlgHom.instFunLike
evalNonUnitalStarAlgHom
MulHom.toFun
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
evalMulHom
evalStarAlgHom_apply 📖mathematicalDFunLike.coe
StarAlgHom
semiring
algebra
instStarForall
StarAlgHom.instFunLike
evalStarAlgHom
MulActionHom.toFun
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
MonoidHom.instFunLike
MonoidHom.id
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
nonUnitalNonAssocSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
distribMulAction
Module.toDistribMulAction
Algebra.toModule
DistribMulActionHom.toMulActionHom
NonUnitalAlgHom.toDistribMulActionHom
NonUnitalStarAlgHom.toNonUnitalAlgHom
evalNonUnitalStarAlgHom

StarAlgEquiv

Definitions

NameCategoryTheorems
aut 📖CompOp
22 mathmath: Unitary.conjStarAlgAut_trans_conjStarAlgAut, Unitary.conjStarAlgAut_symm, Unitary.conjStarAlgEquiv_unitaryLinearIsometryEquiv, mul_apply, aut_mul, one_apply, aut_inv, Unitary.conjStarAlgAut_ext_iff', Matrix.IsHermitian.cfcAux_apply, Unitary.conjStarAlgAut_apply, Unitary.toAlgEquiv_conjStarAlgAut, coe_pow, Unitary.conjStarAlgAut_symm_apply, Unitary.toRingEquiv_conjStarAlgAut, Matrix.IsHermitian.spectral_theorem, Unitary.conjStarAlgAut_mul_apply, Matrix.IsHermitian.star_mul_self_mul_eq_diagonal, Unitary.conjStarAlgAut_symm_unitaryLinearIsometryEquiv, aut_one, Matrix.IsHermitian.conjStarAlgAut_star_eigenvectorUnitary, Unitary.conjStarAlgAut_star_apply, Unitary.conjStarAlgAut_ext_iff
instEquivLike 📖CompOp
11 mathmath: toStarRingEquiv_symm, gelfandStarTransform_naturality, toStarRingEquiv_eq_coe, toRingEquiv_symm, symm_to_ringEquiv, toRingEquiv_eq_coe, instStarRingEquivClass, to_ringEquiv_symm, cfcHom_eq_of_isStarNormal, instNonUnitalAlgEquivClass, invFun_eq_symm
instFunLike 📖CompOp
66 mathmath: Matrix.l2_opNorm_toEuclideanCLM, ofInjective_symm_apply, Matrix.kroneckerTMulStarAlgEquiv_symm_apply, ofLeftInverse'_apply, ofStarAlgHom_symm_apply, Matrix.cstar_nnnorm_def, mul_apply, CStarMatrix.mapₗ_reindexₐ, ofStarAlgHom_apply, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, LinearIsometryEquiv.conjStarAlgEquiv_apply, restrictScalars_symm_apply, LinearMap.toMatrixOrthonormal_reindex, coe_toAlgEquiv, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, ofInjective_apply, LinearMap.toMatrixOrthonormal_apply_apply, coe_refl, one_apply, gelfandStarTransform_symm_apply, Matrix.toEuclideanCLM_toLp, rightInverse_symm, leftInverse_symm, LinearMap.toMatrixOrthonormal_symm_apply, ofBijective_apply, Matrix.IsHermitian.cfcAux_apply, Matrix.ofLp_toEuclideanCLM, coe_ofBijective, Matrix.kroneckerTMulStarAlgEquiv_apply, apply_symm_apply, CStarMatrix.reindexₐ_apply, Unitary.conjStarAlgAut_apply, coe_pow, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, LinearMap.toMatrixOrthonormal_apply, Unitary.conjStarAlgAut_symm_apply, coe_symm_toAlgEquiv, symm_apply_apply, Matrix.IsHermitian.spectral_theorem, LinearIsometryEquiv.symm_conjStarAlgEquiv_apply_apply, coe_trans, restrictScalars_apply, CStarMatrix.ofMatrix_eq_ofMatrixStarAlgEquiv, symm_trans_apply, Homeomorph.compStarAlgEquiv'_apply, Unitary.conjStarAlgAut_mul_apply, ext_iff, ofAlgEquiv_apply, Unitization.inrRangeEquiv_apply_coe, ofInjective'_apply, Matrix.IsHermitian.star_mul_self_mul_eq_diagonal, Homeomorph.compStarAlgEquiv'_symm_apply, Matrix.cstar_norm_def, coe_mk, ofLeftInverse'_symm_apply, Matrix.IsHermitian.conjStarAlgAut_star_eigenvectorUnitary, cfcHom_eq_of_isStarNormal, Unitary.conjStarAlgAut_star_apply, Matrix.kroneckerStarAlgEquiv_apply, Unitization.inrRangeEquiv_symm_apply, trans_apply, LinearIsometryEquiv.conjStarAlgEquiv_apply_apply, continuousFunctionalCalculus_map_id, invFun_eq_symm, Matrix.kroneckerStarAlgEquiv_symm_apply
instInhabited 📖CompOp
ofAlgEquiv 📖CompOp
4 mathmath: toAlgEquiv_ofAlgEquiv, ofAlgEquiv_toAlgEquiv, ofAlgEquiv_apply, ofAlgEquiv_symm
ofBijective 📖CompOp
2 mathmath: ofBijective_apply, coe_ofBijective
ofStarAlgHom 📖CompOp
2 mathmath: ofStarAlgHom_symm_apply, ofStarAlgHom_apply
refl 📖CompOp
5 mathmath: coe_refl, toAlgEquiv_refl, LinearIsometryEquiv.conjStarAlgEquiv_refl, refl_symm, aut_one
toAlgEquiv 📖CompOp
10 mathmath: coe_toAlgEquiv, toAlgEquiv_injective, Matrix.toAlgEquiv_kroneckerStarAlgEquiv, Matrix.toAlgEquiv_kroneckerTMulStarAlgEquiv, toAlgEquiv_symm, toAlgEquiv_refl, toAlgEquiv_ofAlgEquiv, Unitary.toAlgEquiv_conjStarAlgAut, toAlgEquiv_trans, coe_symm_toAlgEquiv
toStarRingEquiv 📖CompOp
6 mathmath: restrictScalars_symm_apply, toStarRingEquiv_eq_coe, toRingEquiv_eq_coe, Unitary.toRingEquiv_conjStarAlgAut, map_smul', ofAlgEquiv_symm
trans 📖CompOp
7 mathmath: Unitary.conjStarAlgAut_trans_conjStarAlgAut, aut_mul, LinearIsometryEquiv.conjStarAlgEquiv_trans, toAlgEquiv_trans, coe_trans, symm_trans_apply, trans_apply

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
symm
StarRingEquiv.apply_symm_apply
aut_inv 📖mathematicalStarAlgEquiv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
aut
symm
aut_mul 📖mathematicalStarAlgEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
aut
trans
aut_one 📖mathematicalStarAlgEquiv
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
aut
refl
coe_mk 📖mathematicalEquiv.toFun
RingEquiv.toEquiv
StarRingEquiv.toRingEquiv
DFunLike.coe
StarAlgEquiv
instFunLike
StarRingEquiv
StarRingEquiv.instFunLike
coe_ofBijective 📖mathematicalFunction.Bijective
DFunLike.coe
StarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
instFunLike
ofBijective
coe_pow 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
aut
Nat.iterate
hom_coe_pow
one_apply
mul_apply
coe_refl 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
refl
coe_symm_toAlgEquiv 📖mathematicalDFunLike.coe
AlgEquiv
AlgEquiv.instFunLike
AlgEquiv.symm
toAlgEquiv
StarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
instFunLike
symm
coe_toAlgEquiv 📖mathematicalDFunLike.coe
AlgEquiv
AlgEquiv.instFunLike
toAlgEquiv
StarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
instFunLike
coe_trans 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
trans
ext 📖DFunLike.coe
StarAlgEquiv
instFunLike
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
ext
instNonUnitalAlgEquivClass 📖mathematicalNonUnitalAlgEquivClass
StarAlgEquiv
instEquivLike
RingEquiv.map_mul'
RingEquiv.map_add'
map_smul'
instStarRingEquivClass 📖mathematicalStarRingEquivClass
StarAlgEquiv
instEquivLike
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
StarRingEquiv.map_star'
invFun_eq_symm 📖mathematicalEquivLike.inv
StarAlgEquiv
instEquivLike
DFunLike.coe
instFunLike
symm
leftInverse_symm 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
symm
Equiv.left_inv
map_smul' 📖mathematicalEquiv.toFun
RingEquiv.toEquiv
StarRingEquiv.toRingEquiv
toStarRingEquiv
mk_coe 📖DFunLike.coe
StarAlgEquiv
instFunLike
Equiv.toFun
RingEquiv.toEquiv
Star.star
StarRingEquiv.toRingEquiv
ext
mul_apply 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
aut
ofAlgEquiv_apply 📖mathematicalDFunLike.coe
AlgEquiv
AlgEquiv.instFunLike
Star.star
StarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
instFunLike
ofAlgEquiv
ofAlgEquiv_symm 📖mathematicalDFunLike.coe
AlgEquiv
AlgEquiv.instFunLike
Star.star
symm
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
ofAlgEquiv
AlgEquiv.symm
StarRingEquiv.map_star'
toStarRingEquiv
ofAlgEquiv_toAlgEquiv 📖mathematicalDFunLike.coe
AlgEquiv
AlgEquiv.instFunLike
toAlgEquiv
Star.star
ofAlgEquiv
ofBijective_apply 📖mathematicalFunction.Bijective
DFunLike.coe
StarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
instFunLike
ofBijective
ofStarAlgHom_apply 📖mathematicalDFunLike.coeStarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
instFunLike
ofStarAlgHom
ofStarAlgHom_symm_apply 📖mathematicalDFunLike.coeStarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
instFunLike
symm
ofStarAlgHom
one_apply 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
aut
refl_symm 📖mathematicalsymm
refl
rightInverse_symm 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
symm
Equiv.right_inv
symm_apply_apply 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
symm
StarRingEquiv.symm_apply_apply
symm_bijective 📖mathematicalFunction.Bijective
StarAlgEquiv
symm
Function.bijective_iff_has_inverse
symm_symm
symm_mk 📖mathematicalEquiv.toFun
RingEquiv.toEquiv
Star.star
StarRingEquiv.toRingEquiv
symm
symm_symm 📖mathematicalsymm
symm_to_ringEquiv 📖mathematicalRingEquivClass.toRingEquiv
StarAlgEquiv
instEquivLike
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
symm
RingEquiv.symm
toRingEquiv_symm
symm_trans_apply 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
symm
trans
toAlgEquiv_injective 📖mathematicalStarAlgEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
AlgEquiv
toAlgEquiv
ext
AlgEquiv.congr_fun
toAlgEquiv_ofAlgEquiv 📖mathematicalDFunLike.coe
AlgEquiv
AlgEquiv.instFunLike
Star.star
toAlgEquiv
ofAlgEquiv
toAlgEquiv_refl 📖mathematicaltoAlgEquiv
refl
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
AlgEquiv.refl
toAlgEquiv_symm 📖mathematicaltoAlgEquiv
symm
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
AlgEquiv.symm
toAlgEquiv_trans 📖mathematicaltoAlgEquiv
trans
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
Algebra.toSMul
AlgEquiv.trans
toRingEquiv_eq_coe 📖mathematicalStarRingEquiv.toRingEquiv
toStarRingEquiv
RingEquivClass.toRingEquiv
StarAlgEquiv
instEquivLike
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
toRingEquiv_symm 📖mathematicalRingEquivClass.toRingEquiv
StarAlgEquiv
instEquivLike
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
symm
RingEquiv.symm
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
toStarRingEquiv_eq_coe 📖mathematicaltoStarRingEquiv
StarRingEquivClass.toStarRingEquiv
StarAlgEquiv
instEquivLike
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
instStarRingEquivClass
toStarRingEquiv_symm 📖mathematicalStarRingEquivClass.toStarRingEquiv
StarAlgEquiv
instEquivLike
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
instStarRingEquivClass
symm
StarRingEquiv.symm
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
instStarRingEquivClass
to_ringEquiv_symm 📖mathematicalRingEquiv.symm
RingEquivClass.toRingEquiv
StarAlgEquiv
instEquivLike
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
symm
NonUnitalAlgEquivClass.toRingEquivClass
instNonUnitalAlgEquivClass
trans_apply 📖mathematicalDFunLike.coe
StarAlgEquiv
instFunLike
trans

StarAlgEquiv.Simps

Definitions

NameCategoryTheorems
symm_apply 📖CompOp

StarAlgEquiv.symm_mk

Definitions

NameCategoryTheorems
aux 📖CompOp

StarAlgEquivClass

Definitions

NameCategoryTheorems
instCoeHead 📖CompOp
toStarAlgEquiv 📖CompOp

StarAlgHom

Definitions

NameCategoryTheorems
comp 📖CompOp
18 mathmath: comp_assoc, StarSubalgebra.subtype_comp_inclusion, gelfandStarTransform_naturality, StarSubalgebra.map_map, comp_apply, ContinuousMap.compStarAlgHom_comp, ContinuousMap.compStarAlgHom'_comp, snd_prod, id_comp, coe_comp, StarSubalgebra.comap_comap, comp_id, Unitization.starMap_comp, subtype_comp_codRestrict, prodEquiv_symm_apply, fst_prod, WeakDual.CharacterSpace.compContinuousMap_comp, cfcHom_eq_of_isStarNormal
copy 📖CompOp
2 mathmath: coe_copy, copy_eq
fst 📖CompOp
4 mathmath: prod_fst_snd, prodEquiv_symm_apply, fst_prod, fst_apply
id 📖CompOp
9 mathmath: Unitization.starMap_id, id_comp, StarSubalgebra.comap_id, comp_id, ContinuousMap.compStarAlgHom_id, ContinuousMap.compStarAlgHom'_id, coe_id, WeakDual.CharacterSpace.compContinuousMap_id, StarSubalgebra.map_id
instFunLike 📖CompOp
85 mathmath: Matrix.IsHermitian.isClosedEmbedding_cfcAux, IsSelfAdjoint.commute_cfcHom, StarSubalgebra.inclusion_apply, StarSubalgebra.coe_map, Unitization.starAlgHom_ext_iff, cfcHom_continuous, cfcL_apply, snd_apply, cfcHom_nonneg_iff, cfc_apply_mkD, coe_prod, Unitization.starLift_symm_apply_apply, Unitization.starLift_apply_apply, cfcHom_isClosedEmbedding, BoundedContinuousFunction.coe_toContinuousMapStarₐ, comp_apply, cfcHom_le_iff, cfcHom_id, StarSubalgebra.mem_comap, coe_mk', coe_mk, realContinuousMapOfNNReal_apply, gelfandStarTransform_symm_apply, StarSubalgebra.subtype_apply, Unitization.starMap_injective, instStarHomClass, ext_iff, coe_coe, StarSubalgebra.isClosedEmbedding_inclusion, cfcHom_integral, ContinuousFunctionalCalculus.exists_cfc_of_predicate, coe_toAlgHom, restrictScalars_apply, cfc_def, Unitization.starMap_inl, realContinuousMapOfNNReal_apply_comp_toReal, Unitization.starMap_inr, NonUnitalStarSubalgebra.unitization_injective, NonUnitalStarSubalgebra.unitization_apply, Unitization.starMap_surjective, Matrix.IsHermitian.cfcAux_apply, StarSubalgebra.coe_subtype, ofId_apply, continuous_cfcHomSuperset_left, PositiveLinearMap.gnsStarAlgHom_apply, cfcHomSuperset_apply, coe_comp, cfcHom_eq_cfc_extend, SpectrumRestricts.starAlgHom_apply, instAlgHomClass, Commute.cfcHom, ContinuousMap.evalStarAlgHom_apply, ContinuousMap.nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, cfc_apply, QuasispectrumRestricts.nonUnitalStarAlgHom_apply, Unitization.starMap_apply, cfcHom_isStrictlyPositive_iff, coe_toNonUnitalStarAlgHom, BoundedContinuousFunction.toContinuousMapStarₐ_apply_apply, Homeomorph.compStarAlgEquiv'_apply, cfc_apply_pi, StarSubalgebra.coe_comap, Matrix.IsHermitian.cfcAux_id, prod_apply, cfcHomSuperset_id, StarSubalgebra.inclusion_injective, cfcHom_predicate, norm_cfcHom, ContinuousMap.ker_evalStarAlgHom_inter_adjoin_id, cfcHomSuperset_continuous, ContinuousMap.compStarAlgHom'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, nnnorm_cfcHom, Pi.evalStarAlgHom_apply, ContinuousMap.ker_evalStarAlgHom_eq_closure_adjoin_id, StarSubalgebra.mem_map, map_adjoin, cfcHom_mono, IsometricContinuousFunctionalCalculus.isometric, coe_id, cfcHom_map_spectrum, StarSubalgebra.isEmbedding_inclusion, fst_apply, cfcHom_apply_mem_elemental, isometry_cfcHom
instInhabited 📖CompOp
instMonoid 📖CompOp
1 mathmath: prod_fst_snd
ofId 📖CompOp
3 mathmath: ofId_apply, SpectrumRestricts.starAlgHom_apply, QuasispectrumRestricts.nonUnitalStarAlgHom_apply
prod 📖CompOp
6 mathmath: prodEquiv_apply, coe_prod, snd_prod, prod_fst_snd, prod_apply, fst_prod
prodEquiv 📖CompOp
2 mathmath: prodEquiv_apply, prodEquiv_symm_apply
snd 📖CompOp
4 mathmath: snd_apply, snd_prod, prod_fst_snd, prodEquiv_symm_apply
toAlgHom 📖CompOp
6 mathmath: ContinuousMap.compStarAlgHom_comp, coe_toAlgHom, StarSubalgebra.map_toSubalgebra, WeakDual.CharacterSpace.compContinuousMap_apply, StarSubalgebra.toSubalgebra_subtype, map_star'
toNonUnitalStarAlgHom 📖CompOp
2 mathmath: coe_toNonUnitalStarAlgHom, Unitization.starLift_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_coe 📖mathematicalDFunLike.coe
StarAlgHom
instFunLike
StarAlgHomClass.toStarAlgHom
coe_comp 📖mathematicalDFunLike.coe
StarAlgHom
instFunLike
comp
coe_copy 📖mathematicalDFunLike.coe
StarAlgHom
instFunLike
copy
coe_id 📖mathematicalDFunLike.coe
StarAlgHom
instFunLike
id
coe_mk 📖mathematicalMulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
OneHom.toFun
MulOne.toMul
MonoidHom.toOneHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddZero.toAdd
RingHom.toMonoidHom
DFunLike.coe
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
AlgHom.toRingHom
Star.star
StarAlgHom
instFunLike
coe_mk' 📖mathematicalOneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidHom.toOneHom
RingHom.toMonoidHom
AlgHom.toRingHom
Star.star
DFunLike.coe
StarAlgHom
instFunLike
AlgHom
AlgHom.funLike
coe_prod 📖mathematicalDFunLike.coe
StarAlgHom
Prod.instSemiring
Prod.algebra
Prod.instStar
instFunLike
prod
Pi.prod
coe_toAlgHom 📖mathematicalDFunLike.coe
AlgHom
AlgHom.funLike
toAlgHom
StarAlgHom
instFunLike
coe_toNonUnitalStarAlgHom 📖mathematicalDFunLike.coe
NonUnitalStarAlgHom
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
NonUnitalStarAlgHom.instFunLike
toNonUnitalStarAlgHom
StarAlgHom
instFunLike
comp_apply 📖mathematicalDFunLike.coe
StarAlgHom
instFunLike
comp
comp_assoc 📖mathematicalcomp
comp_id 📖mathematicalcomp
id
ext
copy_eq 📖mathematicalDFunLike.coe
StarAlgHom
instFunLike
copyDFunLike.ext'
ext 📖DFunLike.coe
StarAlgHom
instFunLike
DFunLike.ext
ext_iff 📖mathematicalDFunLike.coe
StarAlgHom
instFunLike
ext
fst_apply 📖mathematicalDFunLike.coe
StarAlgHom
Prod.instSemiring
Prod.algebra
Prod.instStar
instFunLike
fst
fst_prod 📖mathematicalcomp
Prod.instSemiring
Prod.algebra
Prod.instStar
fst
prod
ext
id_comp 📖mathematicalcomp
id
ext
instAlgHomClass 📖mathematicalAlgHomClass
StarAlgHom
instFunLike
MonoidHom.map_mul'
OneHom.map_one'
RingHom.map_add'
RingHom.map_zero'
AlgHom.commutes'
instStarHomClass 📖mathematicalStarHomClass
StarAlgHom
instFunLike
map_star'
map_star' 📖mathematicalOneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
MonoidHom.toOneHom
RingHom.toMonoidHom
AlgHom.toRingHom
toAlgHom
Star.star
mk_coe 📖DFunLike.coe
StarAlgHom
instFunLike
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
OneHom.toFun
MulOne.toMul
MonoidHom.toOneHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddZero.toAdd
RingHom.toMonoidHom
RingHom
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
AlgHom.toRingHom
Star.star
ext
ofId_apply 📖mathematicalDFunLike.coe
StarAlgHom
CommSemiring.toSemiring
Algebra.id
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarMul.toInvolutiveStar
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instFunLike
ofId
RingHom
RingHom.instFunLike
algebraMap
prodEquiv_apply 📖mathematicalDFunLike.coe
Equiv
StarAlgHom
Prod.instSemiring
Prod.algebra
Prod.instStar
EquivLike.toFunLike
Equiv.instEquivLike
prodEquiv
prod
prodEquiv_symm_apply 📖mathematicalDFunLike.coe
Equiv
StarAlgHom
Prod.instSemiring
Prod.algebra
Prod.instStar
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodEquiv
comp
fst
snd
prod_apply 📖mathematicalDFunLike.coe
StarAlgHom
Prod.instSemiring
Prod.algebra
Prod.instStar
instFunLike
prod
prod_fst_snd 📖mathematicalprod
Prod.instSemiring
Prod.algebra
Prod.instStar
fst
snd
StarAlgHom
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
DFunLike.coe_injective
Pi.prod_fst_snd
snd_apply 📖mathematicalDFunLike.coe
StarAlgHom
Prod.instSemiring
Prod.algebra
Prod.instStar
instFunLike
snd
snd_prod 📖mathematicalcomp
Prod.instSemiring
Prod.algebra
Prod.instStar
snd
prod
ext

StarAlgHomClass

Definitions

NameCategoryTheorems
instCoeTCStarAlgHom 📖CompOp
toStarAlgHom 📖CompOp
3 mathmath: gelfandStarTransform_naturality, StarAlgHom.coe_coe, cfcHom_eq_of_isStarNormal

(root)

Definitions

NameCategoryTheorems
NonUnitalAlgEquivClass 📖CompData
1 mathmath: StarAlgEquiv.instNonUnitalAlgEquivClass
NonUnitalStarAlgHom 📖CompData
112 mathmath: cfcₙ_def, continuous_cfcₙHomSuperset_left, norm_cfcₙHom, cfcₙHom_mono, NonUnitalIsometricContinuousFunctionalCalculus.isometric, cfcₙHom_apply_mem_elemental, NonUnitalStarAlgHom.coe_codRestrict, NonUnitalStarAlgHom.inl_apply, isClosedEmbedding_cfcₙAux, NonUnitalStarAlgHom.coe_restrictScalars, NonUnitalStarAlgHom.realContinuousMapZeroOfNNReal_apply_comp_toReal, NonUnitalStarAlgHom.prodEquiv_symm_apply, NonUnitalStarAlgHom.coe_comp, Unitization.starLift_symm_apply_apply, Unitization.starLift_apply_apply, NonUnitalStarAlgHom.range_comp_le_range, NonUnitalStarAlgHom.instStarHomClass, NonUnitalStarAlgHom.injective_codRestrict, cfcₙ_apply_mkD, cfcₙHom_id, range_cfcₙHom, NonUnitalStarSubalgebra.map_map, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply_coe, NonUnitalStarAlgHom.prod_fst_snd, NonUnitalStarSubalgebra.val_inclusion, cfcₙHom_integral, NonUnitalStarAlgHom.comp_apply, cfcₙAux_id, isometry_cfcₙHom, cfcₙHom_predicate, Unitization.starLift_range, NonUnitalStarAlgHom.prod_apply, NonUnitalStarAlgHom.inr_apply, Unitization.inrNonUnitalStarAlgHom_apply, NonUnitalStarSubalgebra.toNonUnitalSubalgebra_subtype, NonUnitalStarSubalgebra.range_val, Commute.cfcₙHom, Unitization.starMap_inr, NonUnitalStarSubalgebra.inclusion_mk, NonUnitalStarAlgHom.restrictScalars_injective, range_cfcₙ_eq_range_cfcₙHom, NonUnitalStarSubalgebraClass.coe_subtype, NonUnitalStarAlgHom.restrictScalars_apply, ContinuousMapZero.nonUnitalStarAlgHom_precomp_apply, NonUnitalStarSubalgebra.iSupLift_inclusion, NonUnitalStarAlgHom.coe_toNonUnitalAlgHom, NonUnitalStarAlgHom.coe_restrictScalars', NonUnitalStarAlgHom.snd_apply, NonUnitalStarAlgHom.coe_zero, NonUnitalStarAlgHom.prodEquiv_apply, cfcₙHom_isClosedEmbedding, cfcₙHom_le_iff, NonUnitalStarAlgHom.realContinuousMapZeroOfNNReal_apply, NonUnitalStarAlgHom.coe_one, cfcₙHom_eq_cfcₙ_extend, NonUnitalStarAlgHom.fst_apply, ContinuousMapZero.toContinuousMapHom_toNNReal, NonUnitalStarSubalgebra.iSupLift_of_mem, DoubleCentralizer.coeHom_apply, cfcₙHom_map_quasispectrum, spec_cfcₙAux, NonUnitalStarAlgHom.coe_coe, Unitization.starLift_apply, cfcₙHomSuperset_id, nnnorm_cfcₙHom, NonUnitalStarSubalgebra.inclusion_right, NonUnitalStarSubalgebraClass.subtype_injective, isClosedEmbedding_cfcₙHom_of_cfcHom, NonUnitalStarAlgHom.realContinuousMapZeroOfNNReal_injective, IsSelfAdjoint.commute_cfcₙHom, QuasispectrumRestricts.nonUnitalStarAlgHom_apply, Unitization.starMap_apply, NonUnitalContinuousFunctionalCalculus.exists_cfc_of_predicate, StarAlgHom.coe_toNonUnitalStarAlgHom, ContinuousMapZero.toContinuousMapHom_apply, NonUnitalStarSubalgebra.toSubring_subtype, cfcₙAux_mem_range_inr, Pi.evalNonUnitalStarAlgHom_apply, NonUnitalStarAlgHom.one_apply, cfcₙHom_continuous, cfcₙHomSuperset_continuous, cfcₙ_apply_pi, NonUnitalStarAlgHom.coe_prod, Unitization.inrRangeEquiv_apply_coe, NonUnitalStarAlgebra.range_id, NonUnitalStarAlgHom.coe_mk', NonUnitalStarSubalgebra.inclusion_injective, cfcₙL_apply, NonUnitalStarAlgHom.coe_inr, Unitization.starLift_range_le, NonUnitalStarAlgHom.coe_mk, NonUnitalStarAlgHom.coe_inl, NonUnitalStarAlgHom.ext_iff, Unitization.starLift_symm_apply, cfcₙHom_of_cfcHom_map_quasispectrum, NonUnitalStarAlgHom.coe_id, cfcₙHomSuperset_apply, cfcₙ_apply, ContinuousMapZero.coe_toContinuousMapHom, NonUnitalStarAlgHom.subsingleton, NonUnitalStarSubalgebraClass.subtype_apply, Unitization.inrRangeEquiv_symm_apply, NonUnitalStarSubalgebra.iSupLift_mk, cfcₙHom_nonneg_iff, CStarMatrix.mapₙₐ_apply, PositiveLinearMap.gnsNonUnitalStarAlgHom_apply, NonUnitalStarSubalgebra.inclusion_self, NonUnitalStarSubalgebra.map_id, NonUnitalStarAlgHom.zero_apply, NonUnitalStarSubalgebra.inclusion_inclusion, NonUnitalStarAlgHom.instNonUnitalAlgHomClass, NonUnitalStarAlgHom.range_comp
StarAlgEquiv 📖CompData
88 mathmath: Matrix.l2_opNorm_toEuclideanCLM, Unitary.conjStarAlgAut_trans_conjStarAlgAut, StarAlgEquiv.ofInjective_symm_apply, Matrix.kroneckerTMulStarAlgEquiv_symm_apply, StarAlgEquiv.ofLeftInverse'_apply, StarAlgEquiv.ofStarAlgHom_symm_apply, Matrix.cstar_nnnorm_def, Unitary.conjStarAlgAut_symm, Unitary.conjStarAlgEquiv_unitaryLinearIsometryEquiv, StarAlgEquiv.mul_apply, CStarMatrix.mapₗ_reindexₐ, StarAlgEquiv.ofStarAlgHom_apply, StarAlgEquiv.toStarRingEquiv_symm, NonUnitalStarSubalgebra.unitizationStarAlgEquiv_apply_coe, LinearIsometryEquiv.conjStarAlgEquiv_apply, StarAlgEquiv.restrictScalars_symm_apply, LinearMap.toMatrixOrthonormal_reindex, StarAlgEquiv.aut_mul, StarAlgEquiv.coe_toAlgEquiv, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, StarAlgEquiv.ofInjective_apply, StarAlgEquiv.toAlgEquiv_injective, LinearMap.toMatrixOrthonormal_apply_apply, StarAlgEquiv.coe_refl, StarAlgEquiv.one_apply, StarAlgEquiv.toStarRingEquiv_eq_coe, gelfandStarTransform_symm_apply, Matrix.toEuclideanCLM_toLp, StarAlgEquiv.rightInverse_symm, StarAlgEquiv.toRingEquiv_symm, StarAlgEquiv.aut_inv, StarAlgEquiv.leftInverse_symm, Unitary.conjStarAlgAut_ext_iff', LinearMap.toMatrixOrthonormal_symm_apply, StarAlgEquiv.ofBijective_apply, StarAlgEquiv.symm_to_ringEquiv, StarAlgEquiv.toRingEquiv_eq_coe, Matrix.IsHermitian.cfcAux_apply, Matrix.ofLp_toEuclideanCLM, StarAlgEquiv.coe_ofBijective, Matrix.kroneckerTMulStarAlgEquiv_apply, StarAlgEquiv.apply_symm_apply, CStarMatrix.reindexₐ_apply, StarAlgEquiv.symm_bijective, Unitary.conjStarAlgAut_apply, Unitary.toAlgEquiv_conjStarAlgAut, StarAlgEquiv.coe_pow, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, LinearMap.toMatrixOrthonormal_apply, Unitary.conjStarAlgAut_symm_apply, Unitary.toRingEquiv_conjStarAlgAut, StarAlgEquiv.coe_symm_toAlgEquiv, StarAlgEquiv.symm_apply_apply, Matrix.IsHermitian.spectral_theorem, StarAlgEquiv.instStarRingEquivClass, LinearIsometryEquiv.symm_conjStarAlgEquiv_apply_apply, StarAlgEquiv.coe_trans, StarAlgEquiv.restrictScalars_apply, CStarMatrix.ofMatrix_eq_ofMatrixStarAlgEquiv, StarAlgEquiv.symm_trans_apply, Homeomorph.compStarAlgEquiv'_apply, Unitary.conjStarAlgAut_mul_apply, StarAlgEquiv.ext_iff, StarAlgEquiv.ofAlgEquiv_apply, Unitization.inrRangeEquiv_apply_coe, StarAlgEquiv.restrictScalars_injective, StarAlgEquiv.ofInjective'_apply, StarAlgEquiv.to_ringEquiv_symm, Matrix.IsHermitian.star_mul_self_mul_eq_diagonal, Unitary.conjStarAlgAut_symm_unitaryLinearIsometryEquiv, StarAlgEquiv.aut_one, Homeomorph.compStarAlgEquiv'_symm_apply, Matrix.cstar_norm_def, StarAlgEquiv.coe_mk, StarAlgEquiv.ofLeftInverse'_symm_apply, Matrix.IsHermitian.conjStarAlgAut_star_eigenvectorUnitary, cfcHom_eq_of_isStarNormal, Unitary.conjStarAlgAut_star_apply, Matrix.kroneckerStarAlgEquiv_apply, Unitization.inrRangeEquiv_symm_apply, StarAlgEquiv.trans_apply, StarAlgEquiv.instNonUnitalAlgEquivClass, LinearIsometryEquiv.conjStarAlgEquiv_apply_apply, continuousFunctionalCalculus_map_id, StarAlgEquiv.invFun_eq_symm, Unitary.conjStarAlgAut_ext_iff, Matrix.kroneckerStarAlgEquiv_symm_apply
StarAlgHom 📖CompData
94 mathmath: Matrix.IsHermitian.isClosedEmbedding_cfcAux, IsSelfAdjoint.commute_cfcHom, StarSubalgebra.inclusion_apply, StarSubalgebra.coe_map, Unitization.starAlgHom_ext_iff, StarAlgHom.prodEquiv_apply, cfcHom_continuous, cfcL_apply, StarAlgHom.snd_apply, cfcHom_nonneg_iff, cfc_apply_mkD, StarAlgHom.coe_prod, Unitization.starLift_symm_apply_apply, Unitization.starLift_apply_apply, cfcHom_isClosedEmbedding, BoundedContinuousFunction.coe_toContinuousMapStarₐ, StarAlgHom.comp_apply, cfcHom_le_iff, cfcHom_id, StarSubalgebra.mem_comap, StarAlgHom.coe_mk', StarAlgHom.coe_mk, StarAlgHom.realContinuousMapOfNNReal_apply, gelfandStarTransform_symm_apply, StarSubalgebra.subtype_apply, Unitization.starMap_injective, StarAlgHom.instStarHomClass, StarAlgHom.ext_iff, StarAlgHom.coe_coe, StarSubalgebra.isClosedEmbedding_inclusion, cfcHom_integral, Unitization.starLift_range, ContinuousFunctionalCalculus.exists_cfc_of_predicate, StarAlgHom.coe_toAlgHom, StarAlgHom.restrictScalars_apply, cfc_def, Unitization.starMap_inl, StarAlgHom.realContinuousMapOfNNReal_apply_comp_toReal, Unitization.starMap_inr, NonUnitalStarSubalgebra.unitization_injective, NonUnitalStarSubalgebra.unitization_apply, Unitization.starMap_surjective, Matrix.IsHermitian.cfcAux_apply, StarSubalgebra.coe_subtype, StarAlgHom.ofId_apply, continuous_cfcHomSuperset_left, PositiveLinearMap.gnsStarAlgHom_apply, StarAlgHom.prod_fst_snd, cfcHomSuperset_apply, StarAlgHom.coe_comp, cfcHom_eq_cfc_extend, Unitization.starLift_apply, SpectrumRestricts.starAlgHom_apply, StarAlgHom.instAlgHomClass, Commute.cfcHom, ContinuousMap.evalStarAlgHom_apply, ContinuousMap.nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, cfc_apply, QuasispectrumRestricts.nonUnitalStarAlgHom_apply, Unitization.starMap_apply, StarAlgHom.realContinuousMapOfNNReal_injective, cfcHom_isStrictlyPositive_iff, StarAlgHom.coe_toNonUnitalStarAlgHom, BoundedContinuousFunction.toContinuousMapStarₐ_apply_apply, Homeomorph.compStarAlgEquiv'_apply, cfc_apply_pi, StarSubalgebra.coe_comap, Matrix.IsHermitian.cfcAux_id, StarAlgHom.prod_apply, cfcHomSuperset_id, StarAlgHom.prodEquiv_symm_apply, StarSubalgebra.inclusion_injective, cfcHom_predicate, norm_cfcHom, ContinuousMap.ker_evalStarAlgHom_inter_adjoin_id, cfcHomSuperset_continuous, Unitization.starLift_range_le, ContinuousMap.compStarAlgHom'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, nnnorm_cfcHom, Pi.evalStarAlgHom_apply, ContinuousMap.ker_evalStarAlgHom_eq_closure_adjoin_id, Unitization.starLift_symm_apply, StarSubalgebra.mem_map, StarAlgHom.map_adjoin, cfcHom_mono, IsometricContinuousFunctionalCalculus.isometric, StarAlgHom.coe_id, StarAlgHom.restrictScalars_injective, cfcHom_map_spectrum, StarSubalgebra.isEmbedding_inclusion, StarAlgHom.fst_apply, cfcHom_apply_mem_elemental, isometry_cfcHom
«term_→⋆ₐ[_]_» 📖CompOp
«term_→⋆ₐ_» 📖CompOp
«term_→⋆ₙₐ[_]_» 📖CompOp
«term_→⋆ₙₐ_» 📖CompOp
«term_≃⋆ₐ[_]_» 📖CompOp
«term_≃⋆ₐ_» 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instAlgEquivClassOfNonUnitalAlgEquivClass 📖mathematicalAlgEquivClassNonUnitalAlgEquivClass.toRingEquivClass
Algebra.algebraMap_eq_smul_one
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
instNonUnitalAlgHomClassOfNonUnitalAlgEquivClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
instNonUnitalAlgHomClassOfNonUnitalAlgEquivClass 📖mathematicalNonUnitalAlgHomClass
EquivLike.toFunLike
NonUnitalAlgEquivClass.toMulActionSemiHomClass
NonUnitalRingHomClass.toAddMonoidHomClass
RingEquivClass.toNonUnitalRingHomClass
NonUnitalAlgEquivClass.toRingEquivClass
NonUnitalRingHomClass.toMulHomClass

---

← Back to Index