StarRingHom
π Source: Mathlib/Algebra/Star/StarRingHom.lean
Statistics
NonUnitalStarRingHom
Definitions
| Name | Category | Theorems |
|---|---|---|
comp π | CompOp | |
copy π | CompOp | |
id π | CompOp | |
instFunLike π | CompOp | |
instInhabited π | CompOp | β |
instMonoid π | CompOp | |
instMonoidWithZero π | CompOp | β |
instZero π | CompOp | |
toNonUnitalRingHom π | CompOp |
Theorems
NonUnitalStarRingHom.Simps
Definitions
| Name | Category | Theorems |
|---|---|---|
apply π | CompOp | β |
NonUnitalStarRingHomClass
Definitions
| Name | Category | Theorems |
|---|---|---|
instCoeHeadNonUnitalStarRingHom π | CompOp | β |
toNonUnitalStarRingHom π | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
toStarHomClass π | mathematical | β | StarHomClass | β | β |
StarRingEquiv
Definitions
| Name | Category | Theorems |
|---|---|---|
instEquivLike π | CompOp | |
instFunLike π | CompOp | 18 mathmath:ofStarRingHom_apply, CentroidHom.starCenterIsoCentroid_symm_apply_coe, CentroidHom.starCenterIsoCentroid_apply, trans_apply, leftInverse_symm, rightInverse_symm, symm_apply_apply, apply_symm_apply, coe_refl, coe_ofBijective, invFun_eq_symm, ofBijective_apply, symm_trans_apply, StarAlgEquiv.coe_mk, coe_trans, coe_mk, ofStarRingHom_symm_apply, ext_iff |
instInhabited π | CompOp | β |
ofBijective π | CompOp | |
ofStarRingHom π | CompOp | |
refl π | CompOp | |
toRingEquiv π | CompOp | |
trans π | CompOp |
Theorems
StarRingEquiv.Simps
Definitions
| Name | Category | Theorems |
|---|---|---|
apply π | CompOp | β |
symm_apply π | CompOp | β |
StarRingEquiv.symm_mk
Definitions
| Name | Category | Theorems |
|---|---|---|
aux π | CompOp | β |
StarRingEquivClass
Definitions
| Name | Category | Theorems |
|---|---|---|
instCoeHead π | CompOp | β |
toStarRingEquiv π | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instNonUnitalStarRingHomClass π | mathematical | β | NonUnitalStarRingHomClassEquivLike.toFunLikeRingEquivClass.toNonUnitalRingHomClass | β | RingEquivClass.toNonUnitalRingHomClassinstStarHomClass |
instStarHomClass π | mathematical | β | StarHomClassEquivLike.toFunLike | β | map_star |
map_star π | mathematical | β | DFunLike.coeEquivLike.toFunLikeStar.star | β | β |
toRingEquivClass π | mathematical | β | RingEquivClass | β | β |
(root)
Definitions
---