Documentation Verification Report

StarRingHom

πŸ“ Source: Mathlib/Algebra/Star/StarRingHom.lean

Statistics

MetricCount
DefinitionsNonUnitalStarRingHom, apply, comp, copy, id, instFunLike, instInhabited, instMonoid, instMonoidWithZero, instZero, toNonUnitalRingHom, NonUnitalStarRingHomClass, instCoeHeadNonUnitalStarRingHom, toNonUnitalStarRingHom, StarRingEquiv, apply, symm_apply, instEquivLike, instFunLike, instInhabited, ofBijective, ofStarRingHom, refl, aux, toRingEquiv, trans, StarRingEquivClass, instCoeHead, toStarRingEquiv, Β«term_→⋆ₙ+*_Β», Β«term_≃⋆+*_Β»
31
Theoremscoe_coe, coe_comp, coe_copy, coe_id, coe_mk, coe_one, coe_toNonUnitalRingHom, coe_zero, comp_apply, comp_assoc, comp_id, copy_eq, ext, ext_iff, id_comp, instNonUnitalRingHomClass, instNonUnitalStarRingHomClass, map_star', mk_coe, one_apply, zero_apply, toStarHomClass, apply_symm_apply, coe_mk, coe_ofBijective, coe_refl, coe_trans, ext, ext_iff, instRingEquivClass, instStarRingEquivClass, invFun_eq_symm, leftInverse_symm, map_star', mk_coe, ofBijective_apply, ofStarRingHom_apply, ofStarRingHom_symm_apply, refl_symm, rightInverse_symm, symm_apply_apply, symm_bijective, symm_mk, symm_symm, symm_trans_apply, toRingEquiv_eq_coe, trans_apply, instNonUnitalStarRingHomClass, instStarHomClass, map_star, toRingEquivClass
51
Total82

NonUnitalStarRingHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
5 mathmath: comp_id, coe_comp, comp_assoc, comp_apply, id_comp
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
id πŸ“–CompOp
3 mathmath: comp_id, coe_id, id_comp
instFunLike πŸ“–CompOp
16 mathmath: coe_zero, CentroidHom.starCenterIsoCentroid_apply, one_apply, instNonUnitalStarRingHomClass, coe_mk, coe_id, instNonUnitalRingHomClass, coe_comp, zero_apply, map_le_map_of_map_star, coe_toNonUnitalRingHom, coe_one, coe_coe, comp_apply, CentroidHom.starCenterToCentroid_apply, ext_iff
instInhabited πŸ“–CompOpβ€”
instMonoid πŸ“–CompOp
2 mathmath: one_apply, coe_one
instMonoidWithZero πŸ“–CompOpβ€”
instZero πŸ“–CompOp
2 mathmath: coe_zero, zero_apply
toNonUnitalRingHom πŸ“–CompOp
2 mathmath: coe_toNonUnitalRingHom, map_star'

Theorems

NameKindAssumesProvesValidatesDepends On
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalStarRingHom
instFunLike
NonUnitalStarRingHomClass.toNonUnitalStarRingHom
β€”β€”
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalStarRingHom
instFunLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
NonUnitalStarRingHom
instFunLike
copyβ€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalStarRingHom
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalMulHom.toFun
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalRingHom.toMulHom
Star.star
DFunLike.coe
NonUnitalStarRingHom
instFunLike
NonUnitalRingHom
NonUnitalRingHom.instFunLike
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalStarRingHom
instFunLike
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
β€”β€”
coe_toNonUnitalRingHom πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalRingHom
NonUnitalRingHom.instFunLike
toNonUnitalRingHom
NonUnitalStarRingHom
instFunLike
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalStarRingHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
instZero
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalStarRingHom
instFunLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
copy_eq πŸ“–mathematicalDFunLike.coe
NonUnitalStarRingHom
instFunLike
copyβ€”DFunLike.ext'
ext πŸ“–β€”DFunLike.coe
NonUnitalStarRingHom
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalStarRingHom
instFunLike
β€”ext
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instNonUnitalRingHomClass πŸ“–mathematicalβ€”NonUnitalRingHomClass
NonUnitalStarRingHom
instFunLike
β€”MulHom.map_mul'
NonUnitalRingHom.map_add'
NonUnitalRingHom.map_zero'
instNonUnitalStarRingHomClass πŸ“–mathematicalβ€”NonUnitalStarRingHomClass
NonUnitalStarRingHom
instFunLike
instNonUnitalRingHomClass
β€”instNonUnitalRingHomClass
map_star'
map_star' πŸ“–mathematicalβ€”MulHom.toFun
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalRingHom.toMulHom
toNonUnitalRingHom
Star.star
β€”β€”
mk_coe πŸ“–β€”DFunLike.coe
NonUnitalStarRingHom
instFunLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
MulHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
AddZero.toAdd
NonUnitalRingHom.toMulHom
Star.star
β€”β€”ext
one_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalStarRingHom
instFunLike
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
β€”β€”
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
NonUnitalStarRingHom
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
instFunLike
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”

NonUnitalStarRingHom.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”

NonUnitalStarRingHomClass

Definitions

NameCategoryTheorems
instCoeHeadNonUnitalStarRingHom πŸ“–CompOpβ€”
toNonUnitalStarRingHom πŸ“–CompOp
1 mathmath: NonUnitalStarRingHom.coe_coe

Theorems

NameKindAssumesProvesValidatesDepends On
toStarHomClass πŸ“–mathematicalβ€”StarHomClassβ€”β€”

StarRingEquiv

Definitions

NameCategoryTheorems
instEquivLike πŸ“–CompOp
4 mathmath: toRingEquiv_eq_coe, invFun_eq_symm, instRingEquivClass, instStarRingEquivClass
instFunLike πŸ“–CompOp
18 mathmath: ofStarRingHom_apply, CentroidHom.starCenterIsoCentroid_symm_apply_coe, CentroidHom.starCenterIsoCentroid_apply, trans_apply, leftInverse_symm, rightInverse_symm, symm_apply_apply, apply_symm_apply, coe_refl, coe_ofBijective, invFun_eq_symm, ofBijective_apply, symm_trans_apply, StarAlgEquiv.coe_mk, coe_trans, coe_mk, ofStarRingHom_symm_apply, ext_iff
instInhabited πŸ“–CompOpβ€”
ofBijective πŸ“–CompOp
2 mathmath: coe_ofBijective, ofBijective_apply
ofStarRingHom πŸ“–CompOp
2 mathmath: ofStarRingHom_apply, ofStarRingHom_symm_apply
refl πŸ“–CompOp
2 mathmath: coe_refl, refl_symm
toRingEquiv πŸ“–CompOp
6 mathmath: StarAlgEquiv.restrictScalars_symm_apply, toRingEquiv_eq_coe, StarAlgEquiv.toRingEquiv_eq_coe, Unitary.toRingEquiv_conjStarAlgAut, map_star', StarAlgEquiv.map_smul'
trans πŸ“–CompOp
3 mathmath: trans_apply, symm_trans_apply, coe_trans

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
StarRingEquiv
instFunLike
symm
β€”RingEquiv.apply_symm_apply
coe_mk πŸ“–mathematicalEquiv.toFun
RingEquiv.toEquiv
Star.star
DFunLike.coe
StarRingEquiv
instFunLike
RingEquiv
EquivLike.toFunLike
RingEquiv.instEquivLike
β€”β€”
coe_ofBijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
StarRingEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
instFunLike
ofBijective
β€”β€”
coe_refl πŸ“–mathematicalβ€”DFunLike.coe
StarRingEquiv
instFunLike
refl
β€”β€”
coe_trans πŸ“–mathematicalβ€”DFunLike.coe
StarRingEquiv
instFunLike
trans
β€”β€”
ext πŸ“–β€”DFunLike.coe
StarRingEquiv
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
StarRingEquiv
instFunLike
β€”ext
instRingEquivClass πŸ“–mathematicalβ€”RingEquivClass
StarRingEquiv
instEquivLike
β€”RingEquiv.map_mul'
RingEquiv.map_add'
instStarRingEquivClass πŸ“–mathematicalβ€”StarRingEquivClass
StarRingEquiv
instEquivLike
β€”instRingEquivClass
map_star'
invFun_eq_symm πŸ“–mathematicalβ€”EquivLike.inv
StarRingEquiv
instEquivLike
DFunLike.coe
instFunLike
symm
β€”β€”
leftInverse_symm πŸ“–mathematicalβ€”DFunLike.coe
StarRingEquiv
instFunLike
symm
β€”Equiv.left_inv
map_star' πŸ“–mathematicalβ€”Equiv.toFun
RingEquiv.toEquiv
toRingEquiv
Star.star
β€”β€”
mk_coe πŸ“–β€”DFunLike.coe
StarRingEquiv
instFunLike
Equiv.toFun
RingEquiv.toEquiv
Star.star
β€”β€”ext
ofBijective_apply πŸ“–mathematicalFunction.Bijective
DFunLike.coe
StarRingEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
instFunLike
ofBijective
β€”β€”
ofStarRingHom_apply πŸ“–mathematicalDFunLike.coeStarRingEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
instFunLike
ofStarRingHom
β€”β€”
ofStarRingHom_symm_apply πŸ“–mathematicalDFunLike.coeStarRingEquiv
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
instFunLike
symm
ofStarRingHom
β€”β€”
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
rightInverse_symm πŸ“–mathematicalβ€”DFunLike.coe
StarRingEquiv
instFunLike
symm
β€”Equiv.right_inv
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
StarRingEquiv
instFunLike
symm
β€”RingEquiv.symm_apply_apply
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
StarRingEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_mk πŸ“–mathematicalEquiv.toFun
RingEquiv.toEquiv
Star.star
symmβ€”β€”
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_trans_apply πŸ“–mathematicalβ€”DFunLike.coe
StarRingEquiv
instFunLike
symm
trans
β€”β€”
toRingEquiv_eq_coe πŸ“–mathematicalβ€”toRingEquiv
RingEquivClass.toRingEquiv
StarRingEquiv
instEquivLike
instRingEquivClass
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
StarRingEquiv
instFunLike
trans
β€”β€”

StarRingEquiv.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

StarRingEquiv.symm_mk

Definitions

NameCategoryTheorems
aux πŸ“–CompOpβ€”

StarRingEquivClass

Definitions

NameCategoryTheorems
instCoeHead πŸ“–CompOpβ€”
toStarRingEquiv πŸ“–CompOp
2 mathmath: StarAlgEquiv.toStarRingEquiv_symm, StarAlgEquiv.toStarRingEquiv_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
instNonUnitalStarRingHomClass πŸ“–mathematicalβ€”NonUnitalStarRingHomClass
EquivLike.toFunLike
RingEquivClass.toNonUnitalRingHomClass
β€”RingEquivClass.toNonUnitalRingHomClass
instStarHomClass
instStarHomClass πŸ“–mathematicalβ€”StarHomClass
EquivLike.toFunLike
β€”map_star
map_star πŸ“–mathematicalβ€”DFunLike.coe
EquivLike.toFunLike
Star.star
β€”β€”
toRingEquivClass πŸ“–mathematicalβ€”RingEquivClassβ€”β€”

(root)

Definitions

NameCategoryTheorems
NonUnitalStarRingHom πŸ“–CompData
16 mathmath: NonUnitalStarRingHom.coe_zero, CentroidHom.starCenterIsoCentroid_apply, NonUnitalStarRingHom.one_apply, NonUnitalStarRingHom.instNonUnitalStarRingHomClass, NonUnitalStarRingHom.coe_mk, NonUnitalStarRingHom.coe_id, NonUnitalStarRingHom.instNonUnitalRingHomClass, NonUnitalStarRingHom.coe_comp, NonUnitalStarRingHom.zero_apply, NonUnitalStarRingHom.map_le_map_of_map_star, NonUnitalStarRingHom.coe_toNonUnitalRingHom, NonUnitalStarRingHom.coe_one, NonUnitalStarRingHom.coe_coe, NonUnitalStarRingHom.comp_apply, CentroidHom.starCenterToCentroid_apply, NonUnitalStarRingHom.ext_iff
NonUnitalStarRingHomClass πŸ“–CompData
3 mathmath: NonUnitalStarAlgHomClass.instNonUnitalStarRingHomClassOfStarHomClass, NonUnitalStarRingHom.instNonUnitalStarRingHomClass, StarRingEquivClass.instNonUnitalStarRingHomClass
StarRingEquiv πŸ“–CompData
22 mathmath: StarRingEquiv.ofStarRingHom_apply, CentroidHom.starCenterIsoCentroid_symm_apply_coe, CentroidHom.starCenterIsoCentroid_apply, StarRingEquiv.trans_apply, StarRingEquiv.toRingEquiv_eq_coe, StarRingEquiv.leftInverse_symm, StarRingEquiv.rightInverse_symm, StarRingEquiv.symm_apply_apply, StarRingEquiv.apply_symm_apply, StarRingEquiv.coe_refl, StarRingEquiv.coe_ofBijective, StarRingEquiv.invFun_eq_symm, StarRingEquiv.ofBijective_apply, StarRingEquiv.symm_trans_apply, StarRingEquiv.instRingEquivClass, StarRingEquiv.symm_bijective, StarRingEquiv.instStarRingEquivClass, StarAlgEquiv.coe_mk, StarRingEquiv.coe_trans, StarRingEquiv.coe_mk, StarRingEquiv.ofStarRingHom_symm_apply, StarRingEquiv.ext_iff
StarRingEquivClass πŸ“–CompData
2 mathmath: StarAlgEquiv.instStarRingEquivClass, StarRingEquiv.instStarRingEquivClass
Β«term_→⋆ₙ+*_Β» πŸ“–CompOpβ€”
Β«term_≃⋆+*_Β» πŸ“–CompOpβ€”

---

← Back to Index