Documentation Verification Report

Symmetrized

πŸ“ Source: Mathlib/Algebra/Symmetrized.lean

Statistics

MetricCount
DefinitionsSymAlg, addCommGroup, addCommMonoid, addCommSemigroup, addGroup, addMonoid, instAdd, instCommMagmaOfInvertibleOfNat, instInhabited, instInv, instInvertibleCoeEquivSym, instModule, instMulOfAddOfInvertibleOfNat, instNeg, instNonAssocRingOfInvertibleOfNat, instOne, instSMul, instSub, instUnique, instZero, nonAssocSemiring, sym, unsym, «term_˒ʸᡐ»
24
TheoremsinstIsCommJordan, instIsEmpty, instNontrivial, instSubsingleton, invOf_sym, mul_comm, mul_def, sym_add, sym_bijective, sym_comp_unsym, sym_eq_one_iff, sym_eq_zero_iff, sym_inj, sym_injective, sym_inv, sym_mul_self, sym_mul_sym, sym_ne_one_iff, sym_ne_zero_iff, sym_neg, sym_one, sym_smul, sym_sub, sym_surjective, sym_symm, sym_unsym, sym_zero, unsym_add, unsym_bijective, unsym_comp_sym, unsym_eq_one_iff, unsym_eq_zero_iff, unsym_inj, unsym_injective, unsym_inv, unsym_mul, unsym_mul_self, unsym_ne_one_iff, unsym_ne_zero_iff, unsym_neg, unsym_one, unsym_smul, unsym_sub, unsym_surjective, unsym_sym, unsym_symm, unsym_zero
47
Total71

SymAlg

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOpβ€”
addCommMonoid πŸ“–CompOpβ€”
addCommSemigroup πŸ“–CompOpβ€”
addGroup πŸ“–CompOpβ€”
addMonoid πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
2 mathmath: unsym_add, sym_add
instCommMagmaOfInvertibleOfNat πŸ“–CompOp
1 mathmath: instIsCommJordan
instInhabited πŸ“–CompOpβ€”
instInv πŸ“–CompOp
2 mathmath: unsym_inv, sym_inv
instInvertibleCoeEquivSym πŸ“–CompOp
1 mathmath: invOf_sym
instModule πŸ“–CompOpβ€”
instMulOfAddOfInvertibleOfNat πŸ“–CompOp
7 mathmath: unsym_mul, mul_comm, invOf_sym, sym_mul_self, unsym_mul_self, sym_mul_sym, mul_def
instNeg πŸ“–CompOp
2 mathmath: sym_neg, unsym_neg
instNonAssocRingOfInvertibleOfNat πŸ“–CompOpβ€”
instOne πŸ“–CompOp
5 mathmath: invOf_sym, sym_eq_one_iff, unsym_eq_one_iff, sym_one, unsym_one
instSMul πŸ“–CompOp
2 mathmath: unsym_smul, sym_smul
instSub πŸ“–CompOp
2 mathmath: sym_sub, unsym_sub
instUnique πŸ“–CompOpβ€”
instZero πŸ“–CompOp
4 mathmath: sym_zero, unsym_zero, sym_eq_zero_iff, unsym_eq_zero_iff
nonAssocSemiring πŸ“–CompOpβ€”
sym πŸ“–CompOp
23 mathmath: unsym_comp_sym, sym_bijective, sym_neg, sym_zero, sym_add, sym_sub, sym_injective, sym_inv, sym_unsym, invOf_sym, sym_eq_one_iff, sym_surjective, sym_mul_self, sym_inj, sym_eq_zero_iff, sym_comp_unsym, sym_smul, unsym_symm, sym_one, unsym_sym, sym_symm, sym_mul_sym, mul_def
unsym πŸ“–CompOp
22 mathmath: unsym_comp_sym, unsym_mul, unsym_zero, unsym_add, unsym_inv, sym_unsym, unsym_smul, unsym_injective, unsym_bijective, unsym_surjective, unsym_eq_one_iff, unsym_mul_self, unsym_sub, sym_comp_unsym, unsym_symm, unsym_sym, unsym_neg, sym_symm, unsym_one, mul_def, unsym_inj, unsym_eq_zero_iff

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCommJordan πŸ“–mathematicalβ€”IsCommJordan
SymAlg
instCommMagmaOfInvertibleOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Commute.add_left
Commute.one_left
Commute.eq
Commute.invOf_left
one_add_one_eq_two
mul_def
unsym_sym
mul_assoc
mul_add
Distrib.leftDistribClass
add_mul
Distrib.rightDistribClass
add_assoc
unsym_mul_self
sub_eq_zero
mul_sub
add_sub_add_right_eq_sub
add_sub_add_left_eq_sub
add_comm
MulZeroClass.mul_zero
instIsEmpty πŸ“–mathematicalβ€”IsEmpty
SymAlg
β€”Function.isEmpty
instNontrivial πŸ“–mathematicalβ€”Nontrivial
SymAlg
β€”Function.Injective.nontrivial
sym_injective
instSubsingleton πŸ“–mathematicalβ€”SymAlgβ€”Function.Injective.subsingleton
unsym_injective
invOf_sym πŸ“–mathematicalβ€”Invertible.invOf
SymAlg
instMulOfAddOfInvertibleOfNat
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoidWithOne.toAddMonoid
AddMonoidWithOne.toOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sym
instInvertibleCoeEquivSym
β€”Nat.instAtLeastTwoHAddOfNat
mul_comm πŸ“–mathematicalβ€”SymAlg
instMulOfAddOfInvertibleOfNat
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
β€”mul_def
add_comm
mul_def πŸ“–mathematicalβ€”SymAlg
instMulOfAddOfInvertibleOfNat
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sym
Invertible.invOf
unsym
β€”β€”
sym_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
instAdd
β€”β€”
sym_bijective πŸ“–mathematicalβ€”Function.Bijective
SymAlg
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sym
β€”Equiv.bijective
sym_comp_unsym πŸ“–mathematicalβ€”SymAlg
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sym
unsym
β€”β€”
sym_eq_one_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
instOne
β€”sym_injective
sym_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
instZero
β€”sym_injective
sym_inj πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
β€”sym_injective
sym_injective πŸ“–mathematicalβ€”SymAlg
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sym
β€”Equiv.injective
sym_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
instInv
β€”β€”
sym_mul_self πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instMulOfAddOfInvertibleOfNat
Distrib.toAdd
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sym_mul_sym
two_mul
invOf_mul_cancel_left
sym_mul_sym πŸ“–mathematicalβ€”SymAlg
instMulOfAddOfInvertibleOfNat
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sym
Invertible.invOf
β€”β€”
sym_ne_one_iff πŸ“–β€”β€”β€”β€”sym_eq_one_iff
sym_ne_zero_iff πŸ“–β€”β€”β€”β€”sym_eq_zero_iff
sym_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
instNeg
β€”β€”
sym_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
instOne
β€”β€”
sym_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
instSMul
β€”β€”
sym_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
instSub
β€”β€”
sym_surjective πŸ“–mathematicalβ€”SymAlg
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
sym
β€”Equiv.surjective
sym_symm πŸ“–mathematicalβ€”Equiv.symm
SymAlg
sym
unsym
β€”β€”
sym_unsym πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
unsym
β€”β€”
sym_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
sym
instZero
β€”β€”
unsym_add πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instAdd
β€”β€”
unsym_bijective πŸ“–mathematicalβ€”Function.Bijective
SymAlg
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
unsym
β€”Equiv.bijective
unsym_comp_sym πŸ“–mathematicalβ€”SymAlg
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
unsym
sym
β€”β€”
unsym_eq_one_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instOne
β€”unsym_injective
unsym_eq_zero_iff πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instZero
β€”unsym_injective
unsym_inj πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
β€”unsym_injective
unsym_injective πŸ“–mathematicalβ€”SymAlg
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
unsym
β€”Equiv.injective
unsym_inv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instInv
β€”β€”
unsym_mul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instMulOfAddOfInvertibleOfNat
Invertible.invOf
β€”β€”
unsym_mul_self πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instMulOfAddOfInvertibleOfNat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toMul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
mul_def
unsym_sym
two_mul
invOf_mul_cancel_left
unsym_ne_one_iff πŸ“–β€”β€”β€”β€”unsym_eq_one_iff
unsym_ne_zero_iff πŸ“–β€”β€”β€”β€”unsym_eq_zero_iff
unsym_neg πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instNeg
β€”β€”
unsym_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instOne
β€”β€”
unsym_smul πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instSMul
β€”β€”
unsym_sub πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instSub
β€”β€”
unsym_surjective πŸ“–mathematicalβ€”SymAlg
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
unsym
β€”Equiv.surjective
unsym_sym πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
sym
β€”β€”
unsym_symm πŸ“–mathematicalβ€”Equiv.symm
SymAlg
unsym
sym
β€”β€”
unsym_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SymAlg
EquivLike.toFunLike
Equiv.instEquivLike
unsym
instZero
β€”β€”

(root)

Definitions

NameCategoryTheorems
SymAlg πŸ“–CompOp
43 mathmath: SymAlg.unsym_comp_sym, SymAlg.sym_bijective, SymAlg.sym_neg, SymAlg.sym_zero, SymAlg.unsym_mul, SymAlg.unsym_zero, SymAlg.unsym_add, SymAlg.sym_add, SymAlg.unsym_inv, SymAlg.sym_sub, SymAlg.sym_injective, SymAlg.instNontrivial, SymAlg.instIsCommJordan, SymAlg.sym_inv, SymAlg.sym_unsym, SymAlg.mul_comm, SymAlg.invOf_sym, SymAlg.sym_eq_one_iff, SymAlg.unsym_smul, SymAlg.unsym_injective, SymAlg.sym_surjective, SymAlg.sym_mul_self, SymAlg.unsym_bijective, SymAlg.unsym_surjective, SymAlg.unsym_eq_one_iff, SymAlg.sym_inj, SymAlg.instSubsingleton, SymAlg.unsym_mul_self, SymAlg.sym_eq_zero_iff, SymAlg.unsym_sub, SymAlg.sym_comp_unsym, SymAlg.sym_smul, SymAlg.unsym_symm, SymAlg.instIsEmpty, SymAlg.sym_one, SymAlg.unsym_sym, SymAlg.unsym_neg, SymAlg.sym_symm, SymAlg.sym_mul_sym, SymAlg.unsym_one, SymAlg.mul_def, SymAlg.unsym_inj, SymAlg.unsym_eq_zero_iff
Β«term_˒ʸᡐ» πŸ“–CompOpβ€”

---

← Back to Index