Documentation Verification Report

AffineTransitionLimit

📁 Source: Mathlib/AlgebraicGeometry/AffineTransitionLimit.lean

Statistics

MetricCount
DefinitionsExistsHomHomCompEqCompAux, D', a, b, c, c', g, hc, hc', hii', i, i', 𝒰D, 𝒰D₀, 𝒰S, 𝒰X, isLimitOpensCone, opensCone, opensDiagram, opensDiagramι
20
Theoremsexists_eq, exists_index, ha, hab, hb, h𝒰S, h𝒰X, range_g_subset, compactSpace_of_isLimit, exists_hom_comp_eq_comp_of_locallyOfFiniteType, exists_hom_hom_comp_eq_comp_of_locallyOfFiniteType, exists_isAffine_of_isLimit, exists_isOpenCover_and_isAffine, exists_isQuasiAffine_of_isLimit, exists_π_app_comp_eq_of_locallyOfFinitePresentation, nonempty_of_isLimit, exists_appTop_map_eq_zero_of_isAffine_of_isLimit, exists_appTop_map_eq_zero_of_isLimit, exists_appTop_π_eq_of_isAffine_of_isLimit, exists_appTop_π_eq_of_isLimit, exists_app_map_eq_map_of_isLimit, exists_app_map_eq_zero_of_isLimit, exists_isAffineOpen_preimage_eq, exists_map_eq_top, exists_map_preimage_eq_map_preimage, exists_map_preimage_le_map_preimage, exists_mem_of_isClosed_of_nonempty, exists_mem_of_isClosed_of_nonempty', exists_preimage_eq, instIsAffineHomMapOverSchemeOpensDiagram, instIsOpenImmersionAppOverSchemeOpensDiagramι, instPreservesLimitSchemeOppositeCommRingCatRightOpΓOfIsAffineHomMapOfCompactSpaceOfQuasiSeparatedSpaceCarrierCarrierObj, isAffineHom_π_app, isBasis_preimage_isAffineOpen, nonempty_isColimit_Γ_mapCocone, opensCone_pt, opensCone_π_app, opensDiagram_map, opensDiagram_obj, opensDiagramι_app
40
Total60

AlgebraicGeometry

Definitions

NameCategoryTheorems
ExistsHomHomCompEqCompAux 📖CompData
isLimitOpensCone 📖CompOp
opensCone 📖CompOp
2 mathmath: opensCone_pt, opensCone_π_app
opensDiagram 📖CompOp
7 mathmath: opensCone_pt, opensDiagram_map, opensDiagramι_app, instIsAffineHomMapOverSchemeOpensDiagram, opensDiagram_obj, opensCone_π_app, instIsOpenImmersionAppOverSchemeOpensDiagramι
opensDiagramι 📖CompOp
2 mathmath: opensDiagramι_app, instIsOpenImmersionAppOverSchemeOpensDiagramι

Theorems

NameKindAssumesProvesValidatesDepends On
exists_appTop_map_eq_zero_of_isAffine_of_isLimit 📖mathematicalIsAffine
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
DFunLike.coe
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CommRingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Scheme.Hom.appTop
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
CategoryTheory.Functor.mapCategoryTheory.Limits.Types.FilteredColimit.isColimit_eq_iff'
CategoryTheory.isFilteredOrEmpty_op_of_isCofilteredOrEmpty
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
CategoryTheory.Limits.comp_preservesColimit
preservesColimit_Γ
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CommRingCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
exists_appTop_map_eq_zero_of_isLimit 📖IsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
DFunLike.coe
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CommRingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Scheme.Hom.appTop
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
le_top
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
Scheme.isBasis_affineOpens
Set.mem_univ
isOpen_univ
IsAffineOpen.preimage
exists_appTop_map_eq_zero_of_isAffine_of_isLimit
CategoryTheory.IsCofiltered.over
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
Scheme.Opens.instIsOpenImmersionι
LE.le.trans
Scheme.Hom.le_resLE_preimage_iff
le_rfl
Set.image_subset_iff
Scheme.Hom.app_eq_appLE
Scheme.Hom.resLE_appLE
Scheme.Opens.ι_appLE
Scheme.Hom.map_appLE
Scheme.Hom.appLE_map
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
CategoryTheory.Category.comp_id
CategoryTheory.Over.w
Scheme.Opens.ι_image_top
Set.image_preimage_subset
Scheme.Hom.resLE.congr_simp
CategoryTheory.eqToHom_op
CompactSpace.elim_nhds_subcover
IsOpen.mem_nhds
TopologicalSpace.Opens.is_open'
Finset.mem_insert_of_mem
Finset.mem_image_of_mem
CategoryTheory.IsCofiltered.inf_exists
TopCat.Presheaf.IsSheaf.section_ext
CommRingCat.hasLimits
CommRingCat.forget_preservesLimits
CommRingCat.forgetReflectIsos
SheafedSpace.IsSheaf
Set.mem_iUnion₂
Eq.ge
Finset.mem_image
Finset.mem_insert_self
Scheme.Hom.comp_preimage
CategoryTheory.Functor.map_comp
le_refl
Scheme.Hom.appLE_comp_appLE
Scheme.Hom.appLE.congr_simp
exists_appTop_π_eq_of_isAffine_of_isLimit 📖mathematicalIsAffine
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
DFunLike.coe
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CommRingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Scheme.Hom.appTop
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
CategoryTheory.Limits.comp_preservesColimit
preservesColimit_Γ
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CommRingCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
exists_appTop_π_eq_of_isLimit 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
CompactSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
QuasiSeparatedSpace
DFunLike.coe
Opposite
TopologicalSpace.Opens
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CommRingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Scheme.Hom.appTop
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
Scheme.compactSpace_of_isLimit
le_top
CategoryTheory.IsCofiltered.nonempty
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
Scheme.isBasis_affineOpens
Set.mem_univ
isOpen_univ
IsAffineOpen.preimage
exists_appTop_π_eq_of_isAffine_of_isLimit
CategoryTheory.IsCofiltered.over
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
Scheme.Opens.instIsOpenImmersionι
Scheme.Hom.image_top_eq_opensRange
Scheme.Opens.opensRange_ι
CategoryTheory.Limits.Cone.w
le_rfl
LE.le.trans
Scheme.Hom.le_resLE_preimage_iff
Scheme.Hom.app_eq_appLE
Scheme.Hom.resLE_appLE
Scheme.Hom.appLE_map
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Functor.map_comp
inf_le_left
inf_le_right
CategoryTheory.IsCofilteredOrEmpty.cone_objs
exists_app_map_eq_zero_of_isLimit
IsCompact.inter_of_isOpen
IsAffineOpen.isCompact
IsOpen.preimage
Scheme.Hom.continuous
TopologicalSpace.Opens.is_open'
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Scheme.Hom.appLE_comp_appLE
Scheme.Hom.appLE.congr_simp
le_refl
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
CompactSpace.elim_nhds_subcover
IsOpen.mem_nhds
Finset.subset_union_left
Finset.mem_image_of_mem
Finset.subset_union_right
Finset.mem_image₂_of_mem
CategoryTheory.IsCofiltered.inf_exists
Finset.mem_image₂
exists_map_eq_top
SetLike.coe_injective
ContinuousMap.continuous
isOpen_iUnion
Set.iUnion_congr_Prop
Set.preimage_iUnion
CategoryTheory.Presheaf.IsSheaf.isSheafFor
CategoryTheory.Presheaf.isSheaf_iff_isSheaf_forget
CommRingCat.hasLimits
CommRingCat.forget_preservesLimits
CommRingCat.forgetReflectIsos
SheafedSpace.IsSheaf
Eq.ge
CategoryTheory.Presieve.isSheafFor_arrows_iff
CategoryTheory.Presieve.isSheafFor_iff_generate
CategoryTheory.Category.assoc
le_inf_iff
TopCat.Presheaf.section_ext
CommRingCat.Colimits.hasColimits_commRingCat
CommRingCat.FilteredColimits.forget_preservesFilteredColimits
TopCat.Presheaf.germ_ext
Scheme.Hom.comp_preimage
CategoryTheory.Limits.Cone.w_assoc
Scheme.Hom.map_appLE
Set.mem_iUnion₂
exists_app_map_eq_map_of_isLimit 📖IsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
IsCompact
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
Scheme.Opens
TopologicalSpace.Opens.instSetLike
DFunLike.coe
Opposite
TopologicalSpace.Opens
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CommRingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Scheme.Hom.app
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
exists_app_map_eq_zero_of_isLimit
exists_app_map_eq_zero_of_isLimit 📖IsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
IsCompact
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
Scheme.Opens
TopologicalSpace.Opens.instSetLike
DFunLike.coe
Opposite
TopologicalSpace.Opens
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CommRingCat.carrier
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Scheme.Hom.app
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
isCompact_iff_compactSpace
CategoryTheory.Functor.map_id
TopologicalSpace.Opens.map_id_obj
Scheme.Opens.instIsOpenImmersionι
Scheme.Hom.image_top_eq_opensRange
Scheme.Opens.opensRange_ι
exists_appTop_map_eq_zero_of_isLimit
CategoryTheory.IsCofiltered.over
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
instIsAffineHomMapOverSchemeOpensDiagram
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
CategoryTheory.ConcreteCategory.comp_apply
LE.le.trans
Scheme.Hom.le_resLE_preimage_iff
le_rfl
Scheme.Hom.app_eq_appLE
Scheme.Hom.resLE_appLE
Scheme.Hom.map_appLE
Scheme.Hom.appLE_map
CategoryTheory.Category.comp_id
CategoryTheory.Over.w
exists_isAffineOpen_preimage_eq 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
QuasiSeparatedSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
IsAffineOpen
Scheme.Opens
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
exists_preimage_eq
IsAffineOpen.isCompact
isCompact_iff_compactSpace
QuasiCompact.isCompact_preimage
instQuasiCompactOfIsAffineHom
TopologicalSpace.Opens.is_open'
isQuasiSeparated_iff_quasiSeparatedSpace
IsQuasiSeparated.of_quasiSeparatedSpace
Scheme.exists_isAffine_of_isLimit
CategoryTheory.IsCofiltered.over
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
instIsAffineHomMapOverSchemeOpensDiagram
Scheme.Hom.comp_preimage
CategoryTheory.Limits.Cone.w
exists_map_eq_top 📖IsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
CompactSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
Scheme.Opens
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
exists_mem_of_isClosed_of_nonempty'
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
IsOpen.isClosed_compl
TopologicalSpace.Opens.is_open'
SetLike.coe_injective
IsClosed.isCompact
CategoryTheory.Functor.map_comp
Eq.ge
Set.mem_univ
CategoryTheory.Functor.map_id
TopologicalSpace.Opens.map_id_obj
exists_map_preimage_eq_map_preimage 📖IsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
IsCompact
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
Scheme.Opens
TopologicalSpace.Opens.instSetLike
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
exists_map_preimage_le_map_preimage
Eq.le
Eq.ge
CategoryTheory.IsCofiltered.cospan
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
le_antisymm
CategoryTheory.Functor.map_comp
Scheme.Hom.preimage_mono
exists_map_preimage_le_map_preimage 📖IsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
IsCompact
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
Scheme.Opens
TopologicalSpace.Opens.instSetLike
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
isCompact_iff_compactSpace
QuasiCompact.isCompact_preimage
instQuasiCompactOfIsAffineHom
TopologicalSpace.Opens.is_open'
Scheme.Hom.comp_preimage
top_le_iff
LE.le.trans
Scheme.Opens.ι_preimage_self
Scheme.Hom.preimage_mono
CategoryTheory.Functor.map_id
TopologicalSpace.Opens.map_id_obj
exists_map_eq_top
CategoryTheory.IsCofiltered.over
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
instIsAffineHomMapOverSchemeOpensDiagram
Scheme.isoOfEq_hom_ι
Scheme.Hom.resLE_comp_ι
Scheme.Opens.instIsOpenImmersionι
Set.image_subset_iff
Eq.ge
Scheme.Hom.image_top_eq_opensRange
Scheme.Opens.opensRange_ι
CategoryTheory.Category.comp_id
CategoryTheory.Discrete.functor_map_id
CategoryTheory.CommaMorphism.w
exists_mem_of_isClosed_of_nonempty 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
IsClosed
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
Set.Nonempty
IsCompact
Set.MapsTo
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
Set
Set.instMembership
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
Scheme.IdealSheafData.map_vanishingIdeal
Scheme.IdealSheafData.le_support_iff_le_vanishingIdeal
Set.image_congr
Set.MapsTo.subset_preimage
CategoryTheory.Functor.map_id
Scheme.IdealSheafData.subschemeMap.congr_simp
CategoryTheory.cancel_mono
IsPreimmersion.instMonoScheme
Scheme.IdealSheafData.instIsPreimmersionSubschemeι
Scheme.IdealSheafData.subschemeMap_subschemeι
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
Scheme.IdealSheafData.subschemeMap_subschemeι_assoc
le_iSup_of_le
CategoryTheory.Limits.Cone.w
IsClosedImmersion.instSubschemeι
LE.le.trans
Scheme.IdealSheafData.ker_subschemeι
Scheme.Hom.le_ker_comp
CategoryTheory.Limits.IsLimit.fac
IsClosedImmersion.lift_fac_assoc
CategoryTheory.Limits.IsLimit.hom_ext
IsClosedImmersion.lift_fac
Scheme.nonempty_of_isLimit
instIsAffineHomCompScheme
IsClosedImmersion.instIsAffineHom
IsAffineHom.of_comp
IsSeparated.isSeparated_of_mono
Set.nonempty_coe_sort
isCompact_iff_compactSpace
Scheme.Hom.continuous
isClosed_iInter
TopologicalSpace.Closeds.isClosed'
Scheme.IdealSheafData.support_iSup
Scheme.IdealSheafData.support_comap
exists_mem_of_isClosed_of_nonempty' 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
IsClosed
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
Set.Nonempty
IsCompact
Set.MapsTo
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Set
Set.instMembership
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
exists_mem_of_isClosed_of_nonempty
CategoryTheory.Over.initial_forget
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
CategoryTheory.IsCofiltered.over
CategoryTheory.Over.w
exists_preimage_eq 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
IsCompact
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.Cone.pt
SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
Scheme.Opens
TopologicalSpace.Opens.instSetLike
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
TopologicalSpace.Opens.IsBasis.exists_finite_of_isCompact
isBasis_preimage_isAffineOpen
CategoryTheory.IsCofiltered.inf_objs_exists
Preorder.subsingleton_hom
Set.toFinite_toFinset
isOpen_iUnion
TopologicalSpace.Opens.is_open'
isCompact_iUnion
IsAffineOpen.isCompact
IsAffineOpen.preimage
Scheme.Hom.preimage_iSup
CategoryTheory.Limits.Cone.w
sSup_eq_iSup'
instIsAffineHomMapOverSchemeOpensDiagram 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.instCategoryOver
opensDiagram
Scheme.Opens.instIsOpenImmersionι
TopologicalSpace.Opens.ext
Set.ext
CategoryTheory.Functor.map_comp
CategoryTheory.Over.w
Scheme.Hom.coe_resLE_apply
IsAffineOpen.preimage_of_isOpenImmersion
IsAffineOpen.preimage
IsAffineOpen.image_of_isOpenImmersion
Scheme.Opens.opensRange_ι
Scheme.Hom.comp_apply
instIsOpenImmersionAppOverSchemeOpensDiagramι 📖mathematicalIsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
Scheme
Scheme.instCategory
opensDiagram
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
CategoryTheory.NatTrans.app
opensDiagramι
Scheme.Opens.instIsOpenImmersionι
instPreservesLimitSchemeOppositeCommRingCatRightOpΓOfIsAffineHomMapOfCompactSpaceOfQuasiSeparatedSpaceCarrierCarrierObj 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
CompactSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
QuasiSeparatedSpace
CategoryTheory.Limits.PreservesLimit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.rightOp
Scheme.Γ
nonempty_isColimit_Γ_mapCocone
CategoryTheory.Limits.preservesLimit_rightOp
isAffineHom_π_app 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
IsAffineOpen.preimage
Scheme.isAffine_of_isLimit
isBasis_preimage_isAffineOpen 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
TopologicalSpace.Opens.IsBasis
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.Cone.pt
SheafedSpace.instTopologicalSpaceCarrierCarrier
setOf
TopologicalSpace.Opens
Scheme.Opens
IsAffineOpen
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
TopologicalSpace.Opens.isBasis_iff_nbhd
CategoryTheory.IsCofiltered.nonempty
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
Scheme.isBasis_affineOpens
Set.mem_univ
isOpen_univ
IsAffineOpen.preimage
IsAffineOpen.exists_basicOpen_le
Scheme.isAffine_of_isLimit
CategoryTheory.Limits.Types.jointly_surjective_of_isColimit
CategoryTheory.Limits.comp_preservesColimit
preservesColimit_Γ
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CommRingCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.IsCofiltered.over
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
RingEquiv.surjective
CategoryTheory.Limits.Cone.w
Eq.ge
LE.le.trans
Scheme.Opens.instIsOpenImmersionι
Scheme.Hom.le_resLE_preimage_iff
le_rfl
CategoryTheory.eqToHom_op
Scheme.Hom.app_eq_appLE
Scheme.Hom.resLE_appLE
Scheme.Hom.appLE_map
Scheme.Hom.map_appLE
RingEquiv.symm_apply_eq
IsAffineOpen.basicOpen
Scheme.preimage_basicOpen
Scheme.basicOpen_res_eq
CategoryTheory.isIso_op
CategoryTheory.instIsIsoEqToHom
CommRingCat.comp_apply
nonempty_isColimit_Γ_mapCocone 📖mathematicalIsAffineHom
CategoryTheory.Functor.obj
Scheme
Scheme.instCategory
CategoryTheory.Functor.map
CompactSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
QuasiSeparatedSpace
CategoryTheory.Limits.IsColimit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor.comp
CategoryTheory.Functor.op
Scheme.Γ
CategoryTheory.Functor.mapCocone
CategoryTheory.Limits.Cone.op
CategoryTheory.Limits.reflectsColimitsOfShape_of_reflectsIsomorphisms
CommRingCat.forgetReflectIsos
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
CategoryTheory.Limits.hasFilteredColimitsOfSize_of_hasColimitsOfSize
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.PreservesFilteredColimitsOfSize.preserves_filtered_colimits
CommRingCat.FilteredColimits.forget_preservesFilteredColimits
CategoryTheory.Limits.ReflectsColimit.reflects
CategoryTheory.Limits.reflectsColimit_of_reflectsColimitsOfShape
CategoryTheory.Limits.ReflectsFilteredColimitsOfSize.reflects_filtered_colimits
CategoryTheory.isFiltered_op_of_isCofiltered
CategoryTheory.isFilteredOrEmpty_op_of_isCofilteredOrEmpty
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
exists_appTop_π_eq_of_isLimit
exists_app_map_eq_map_of_isLimit
isCompact_univ
opensCone_pt 📖mathematicalCategoryTheory.Limits.Cone.pt
CategoryTheory.Over
CategoryTheory.instCategoryOver
Scheme
Scheme.instCategory
opensDiagram
opensCone
Scheme.Opens.toScheme
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Scheme.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
opensCone_π_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
Scheme
Scheme.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
Scheme.Opens.toScheme
CategoryTheory.Limits.Cone.pt
Scheme.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Limits.Cone.π
opensDiagram
opensCone
Scheme.Hom.resLE
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Comma.right
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
opensDiagram_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.Over
CategoryTheory.instCategoryOver
Scheme
Scheme.instCategory
opensDiagram
Scheme.Hom.resLE
CategoryTheory.Functor.obj
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.CommaMorphism.left
Scheme.Opens
CategoryTheory.Comma.right
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Comma.hom
opensDiagram_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.Over
CategoryTheory.instCategoryOver
Scheme
Scheme.instCategory
opensDiagram
Scheme.Opens.toScheme
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Scheme.Opens
CategoryTheory.Comma.right
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Functor.map
CategoryTheory.Comma.hom
opensDiagramι_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Over
CategoryTheory.instCategoryOver
Scheme
Scheme.instCategory
opensDiagram
CategoryTheory.Functor.comp
CategoryTheory.Over.forget
opensDiagramι
Scheme.Opens.ι
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.fromPUnit
Scheme.Opens
CategoryTheory.Comma.right
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Functor.map
CategoryTheory.Comma.hom

AlgebraicGeometry.ExistsHomHomCompEqCompAux

Definitions

NameCategoryTheorems
D' 📖CompOp
a 📖CompOp
4 mathmath: exists_eq, exists_index, ha, hab
b 📖CompOp
4 mathmath: exists_eq, exists_index, hab, hb
c 📖CompOp
1 mathmath: hab
c' 📖CompOp
g 📖CompOp
1 mathmath: range_g_subset
hc 📖CompOp
hc' 📖CompOp
hii' 📖CompOp
1 mathmath: exists_eq
i 📖CompOp
5 mathmath: exists_eq, exists_index, ha, hab, hb
i' 📖CompOp
2 mathmath: exists_eq, range_g_subset
𝒰D 📖CompOp
1 mathmath: exists_eq
𝒰D₀ 📖CompOp
𝒰S 📖CompOp
4 mathmath: h𝒰S, exists_index, h𝒰X, range_g_subset
𝒰X 📖CompOp
3 mathmath: exists_index, h𝒰X, range_g_subset

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq 📖mathematicalCompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
AlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
c
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Precoverage.ZeroHypercover.pullback₁
i'
AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
AlgebraicGeometry.Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
𝒰D
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.PreZeroHypercover.f
i
hii'
a
b
AlgebraicGeometry.Scheme.isAffine_affineCover
AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.instIsAffinePullbackSchemeOfIsAffineHom
AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
AlgebraicGeometry.Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
AlgebraicGeometry.locallyOfFiniteType_comp
AlgebraicGeometry.instLocallyOfFiniteTypeOfLocallyOfFinitePresentation
AlgebraicGeometry.locallyOfFinitePresentation_of_isOpenImmersion
AlgebraicGeometry.Scheme.instIsOpenImmersionF
AlgebraicGeometry.instLocallyOfFiniteTypeSndScheme
CategoryTheory.Limits.pullback.condition
AlgebraicGeometry.Scheme.local_affine
CategoryTheory.Over.initial_forget
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
CategoryTheory.CreatesLimit.toReflectsLimit
CategoryTheory.IsCofiltered.isConnected
CategoryTheory.IsCofiltered.over
CategoryTheory.Limits.comp_preservesLimit
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.Over.pullbackIsRightAdjoint
CategoryTheory.Over.preservesLimitsOfShape_forget_of_isConnected
AlgebraicGeometry.Scheme.IsQuasiAffine.toCompactSpace
AlgebraicGeometry.Scheme.instIsQuasiAffineOfIsAffine
h𝒰S
h𝒰X
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
AlgebraicGeometry.IsOpenImmersion.mono
AlgebraicGeometry.IsOpenImmersion.instFstScheme
hab
CategoryTheory.Limits.limit.lift_π_assoc
CategoryTheory.Limits.limit.lift_π
AlgebraicGeometry.Scheme.Pullback.diagonalCover_map
AlgebraicGeometry.Scheme.instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition
AlgebraicGeometry.isOpenImmersion_isStableUnderComposition
CategoryTheory.Limits.Cone.w
CategoryTheory.Limits.pullback.condition_assoc
exists_index 📖mathematicalCompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
AlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.map
Set.preimage
CategoryTheory.Limits.pullback
AlgebraicGeometry.Scheme.Pullback.instHasPullback
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
i
CategoryTheory.Limits.pullback.lift
a
b
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.NatTrans.app
ha
hb
Compl.compl
Set
Set.instCompl
SetLike.coe
AlgebraicGeometry.Scheme.Opens
CategoryTheory.Limits.pullback.diagonalObj
TopologicalSpace.Opens.instSetLike
AlgebraicGeometry.Scheme.Pullback.diagonalCoverDiagonalRange
𝒰S
𝒰X
Set.instEmptyCollection
AlgebraicGeometry.Scheme.Pullback.instHasPullback
ha
hb
IsClosed.preimage
AlgebraicGeometry.Scheme.Hom.continuous
IsOpen.isClosed_compl
TopologicalSpace.Opens.isOpen
AlgebraicGeometry.exists_mem_of_isClosed_of_nonempty'
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
IsClosed.isCompact
CategoryTheory.Functor.map_comp
AlgebraicGeometry.Scheme.Pullback.range_diagonal_subset_diagonalCoverDiagonalRange
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.diagonal_fst
CategoryTheory.Category.comp_id
hab
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.pullback.diagonal_snd
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
ha 📖mathematicalCategoryTheory.NatTrans.app
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
i
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
a
hab 📖mathematicalCategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
c
i
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
a
b
hb 📖mathematicalCategoryTheory.NatTrans.app
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
i
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
b
h𝒰S 📖mathematicalAlgebraicGeometry.IsAffine
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
𝒰S
h𝒰X 📖mathematicalAlgebraicGeometry.IsAffine
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Precoverage.ZeroHypercover.pullback₁
AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
AlgebraicGeometry.Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
𝒰S
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.PreZeroHypercover.f
𝒰X
range_g_subset 📖mathematicalCompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
AlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.map
Set
CategoryTheory.Limits.pullback
AlgebraicGeometry.Scheme.Pullback.instHasPullback
Set.instHasSubset
Set.range
i'
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
g
SetLike.coe
AlgebraicGeometry.Scheme.Opens
CategoryTheory.Limits.pullback.diagonalObj
TopologicalSpace.Opens.instSetLike
AlgebraicGeometry.Scheme.Pullback.diagonalCoverDiagonalRange
𝒰S
𝒰X
AlgebraicGeometry.Scheme.Pullback.instHasPullback
exists_index
ha
hb

AlgebraicGeometry.Scheme

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_of_isLimit 📖mathematicalAlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Functor.map
CompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Limits.Cone.ptCategoryTheory.IsCofiltered.nonempty
AlgebraicGeometry.isAffineHom_π_app
AlgebraicGeometry.QuasiCompact.compactSpace_of_compactSpace
AlgebraicGeometry.instQuasiCompactOfIsAffineHom
exists_hom_comp_eq_comp_of_locallyOfFiniteType 📖CompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
instCategory
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
AlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.Cone.π
AlgebraicGeometry.isAffineHom_π_app
isAffine_affineCover
instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
Pullback.instHasPullback
isEmpty_or_nonempty
CategoryTheory.Limits.IsInitial.hom_ext
instJointlySurjectivePrecoverage
Cover.nonempty_of_nonempty
CategoryTheory.IsCofiltered.inf_exists
Finset.mem_image_of_mem
Finset.mem_univ
Cover.hom_ext
CategoryTheory.Category.comp_id
CategoryTheory.Functor.map_comp
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_eq
exists_hom_hom_comp_eq_comp_of_locallyOfFiniteType 📖CompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
instCategory
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
AlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.Cone.π
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
exists_hom_comp_eq_comp_of_locallyOfFiniteType
CategoryTheory.Category.assoc
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
CategoryTheory.Limits.Cone.w_assoc
CategoryTheory.Functor.map_comp
exists_isAffine_of_isLimit 📖mathematicalAlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Functor.map
CompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
QuasiSeparatedSpace
AlgebraicGeometry.IsAffineAlgebraicGeometry.isAffineHom_π_app
exists_isQuasiAffine_of_isLimit
instIsQuasiAffineOfIsAffine
AlgebraicGeometry.isAffineHom_of_isAffine
AlgebraicGeometry.isAffine_Spec
IsQuasiAffine.toCompactSpace
instIsOpenImmersionToSpecΓOfIsQuasiAffine
AlgebraicGeometry.exists_map_eq_top
CategoryTheory.Limits.comp_preservesLimit
AlgebraicGeometry.instPreservesLimitSchemeOppositeCommRingCatRightOpΓOfIsAffineHomMapOfCompactSpaceOfQuasiSeparatedSpaceCarrierCarrierObj
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.instIsRightAdjointOfMonadicRightAdjoint
preimage_opensRange_toSpecΓ
Hom.opensRange_of_isIso
AlgebraicGeometry.IsAffine.affine
IsQuasiAffine.of_isAffineHom
AlgebraicGeometry.isIso_of_isOpenImmersion_of_opensRange_eq_top
exists_isOpenCover_and_isAffine 📖mathematicalAlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Functor.map
CompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
QuasiSeparatedSpace
TopologicalSpace.IsOpenCover
CategoryTheory.Limits.Cone.pt
AlgebraicGeometry.IsAffineOpen
Finset
SetLike.instMembership
Finset.instSetLike
Opens
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
CategoryTheory.NatTrans.app
CategoryTheory.Limits.Cone.π
compactSpace_of_isLimit
IsCompact.elim_finite_subcover
isCompact_univ
TopologicalSpace.Opens.isOpen
Eq.ge
TopologicalSpace.IsOpenCover.iSup_set_eq_univ
CategoryTheory.IsCofiltered.inf_objs_exists
Finset.mem_image_of_mem
AlgebraicGeometry.exists_map_eq_top
Hom.preimage_iSup
iSup_congr_Prop
CategoryTheory.Limits.Cone.w
top_le_iff
isOpen_iUnion
TopologicalSpace.Opens.is_open'
Set.iUnion_congr_Prop
Set.mem_univ
Eq.trans_le
iSup_subtype
CategoryTheory.Functor.map_comp
AlgebraicGeometry.IsAffineOpen.preimage
Hom.comp_preimage
AlgebraicGeometry.exists_isAffineOpen_preimage_eq
exists_isQuasiAffine_of_isLimit 📖mathematicalAlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Functor.map
CompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
QuasiSeparatedSpace
IsQuasiAffineCategoryTheory.IsCofiltered.nonempty
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
isBasis_affineOpens
Set.mem_univ
isOpen_univ
IsQuasiAffine.isBasis_basicOpen
TopologicalSpace.Opens.isOpen
AlgebraicGeometry.exists_appTop_π_eq_of_isLimit
CategoryTheory.IsCofilteredOrEmpty.cone_objs
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
AlgebraicGeometry.exists_map_preimage_le_map_preimage
AlgebraicGeometry.isCompact_basicOpen
isCompact_univ
preimage_basicOpen_top
Hom.comp_preimage
CategoryTheory.Limits.Cone.w
le_top
basicOpen_res
inf_eq_right
CategoryTheory.Functor.map_comp
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
Hom.comp_appTop
AlgebraicGeometry.IsAffineOpen.basicOpen
AlgebraicGeometry.IsAffineOpen.preimage
CompactSpace.elim_nhds_subcover
IsQuasiAffine.toCompactSpace
IsOpen.mem_nhds
TopologicalSpace.Opens.is_open'
CategoryTheory.IsCofiltered.inf_objs_exists
Finset.mem_image_of_mem
AlgebraicGeometry.exists_map_eq_top
top_le_iff
TopologicalSpace.Opens.mem_iSup
IsQuasiAffine.of_forall_exists_mem_basicOpen
Eq.ge
Set.mem_iUnion₂
exists_π_app_comp_eq_of_locallyOfFinitePresentation 📖mathematicalAlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Functor.map
CompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
QuasiSeparatedSpace
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.Cone.π
CategoryTheory.NatTrans.appTopologicalSpace.Opens.IsBasis.isOpenCover_mem_and_le
isBasis_affineOpens
TopologicalSpace.IsOpenCover.comap
TopologicalSpace.Opens.IsBasis.isOpenCover
exists_isOpenCover_and_isAffine
CategoryTheory.IsCofiltered.wideCospan
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
Finite.of_fintype
CategoryTheory.Functor.map_comp
Hom.comp_preimage
LE.le.trans
Hom.preimage_mono
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.comp_id
AlgebraicGeometry.exists_map_preimage_le_map_preimage
AlgebraicGeometry.IsAffineOpen.isCompact
CategoryTheory.NatTrans.comp_app
Eq.trans_le
Subtype.prop
CategoryTheory.Limits.Cone.w
AlgebraicGeometry.IsAffineOpen.preimage
Hom.resLE_comp_resLE
Hom.resLE.congr_simp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
le_refl
Hom.resLE_comp_ι
AlgebraicGeometry.morphismRestrict_ι_assoc
homOfLE_ι_assoc
le_rfl
Hom.map_resLE_assoc
Hom.resLE_comp_resLE_assoc
CategoryTheory.IsCofiltered.over
AlgebraicGeometry.instLocallyOfFinitePresentationResLE
AlgebraicGeometry.instIsAffineToSchemeValOpensMemSetAffineOpens
CategoryTheory.NatTrans.ext'
inf_le_left
inf_le_right
isCompact_iff_compactSpace
AlgebraicGeometry.QuasiCompact.isCompact_preimage
AlgebraicGeometry.instQuasiCompactOfIsAffineHom
TopologicalSpace.Opens.isOpen
IsCompact.inter_of_isOpen
TopologicalSpace.Opens.is_open'
CategoryTheory.Functor.map_id
TopologicalSpace.Opens.map_id_obj
exists_hom_comp_eq_comp_of_locallyOfFiniteType
AlgebraicGeometry.instLocallyOfFiniteTypeOfLocallyOfFinitePresentation
AlgebraicGeometry.instIsAffineHomMapOverSchemeOpensDiagram
Hom.resLE_map_assoc
CategoryTheory.Discrete.functor_map_id
Finite.instProd
AlgebraicGeometry.IsOpenImmersion.hasPullback_of_right
instIsOpenImmersionF
Pullback.instHasPullback
AlgebraicGeometry.isPullback_opens_inf
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsPullback.isoPullback_hom_fst_assoc
CategoryTheory.IsPullback.isoPullback_hom_snd_assoc
Cover.ι_glueMorphisms
Cover.hom_ext
instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
CategoryTheory.IsPullback.flip
AlgebraicGeometry.isPullback_morphismRestrict
CategoryTheory.Limits.pullback.condition_assoc
CategoryTheory.Limits.Cone.w_assoc
Cover.ι_glueMorphisms_assoc
nonempty_of_isLimit 📖mathematicalAlgebraicGeometry.IsAffineHom
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Functor.map
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
CompactSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Limits.Cone.ptisEmpty_or_nonempty
Nonempty.map
AlgebraicGeometry.instNonemptyCarrierCarrierCommRingCatSpecOfNontrivialCarrier
ULift.nontrivial
Int.instNontrivial
local_affine
instJointlySurjectivePrecoverage
AlgebraicGeometry.isAffine_Spec
instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
Pullback.instHasPullback
CategoryTheory.Functor.map_comp
CategoryTheory.IsCofiltered.infTo_commutes
Finset.mem_image_of_mem
Finset.mem_univ
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
Function.isEmpty
Cover.covers
Mathlib.Tactic.Push.not_forall_eq
CategoryTheory.MorphismProperty.pullback_snd
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
AlgebraicGeometry.isAffineHom_isStableUnderBaseChange
AlgebraicGeometry.isAffine_of_isAffineHom
AlgebraicGeometry.IsAffine.affine
CategoryTheory.NatIso.isIso_of_isIso_app
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_has_cofiltered_limits
CategoryTheory.Limits.hasCofilteredLimitsOfSize_of_hasLimitsOfSize
CategoryTheory.Limits.hasLimits_op_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.IsCofiltered.over
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.instIsRightAdjointOfMonadicRightAdjoint
PrimeSpectrum.instNonemptyOfNontrivial
component_nontrivial
CommRingCat.FilteredColimits.nontrivial
CategoryTheory.isFilteredOrEmpty_op_of_isCofilteredOrEmpty
CategoryTheory.IsCofiltered.toIsCofilteredOrEmpty
CategoryTheory.Over.initial_forget

---

← Back to Index