Documentation Verification Report

Artinian

πŸ“ Source: Mathlib/AlgebraicGeometry/Artinian.lean

Statistics

MetricCount
DefinitionsIsArtinianScheme, IsLocallyArtinian
2
Theoremsfinite, iff_isNoetherian_and_discreteTopology, isNoetherianScheme, toCompactSpace, toIsLocallyArtinian, discreteTopology, discreteTopology_of_isAffine, iff_isLocallyNoetherian_and_discreteTopology, isArtinianRing_of_isAffine, isArtinianRing_presheaf_obj, isLocallyNoetherian, of_isImmersion, of_isLocallyNoetherian_of_discreteTopology, of_topologicalKrullDim_le_zero, isArtinianScheme_Spec, isLocallyArtinianScheme_Spec, instIsArtinianSchemeOfSubsingletonCarrierCarrierCommRingCatOfIsReduced, instIsArtinianSchemeSpecOfIsArtinianRingCarrier, instIsLocallyArtinianOfDiscreteTopologyCarrierCarrierCommRingCatOfIsReduced, instIsLocallyArtinianOfIsEmptyCarrierCarrierCommRingCat, instIsLocallyArtinianToScheme, instIsLocallyArtinianXScheme, isArtinianScheme_iff, isLocallyArtinian_iff_of_isOpenCover, isLocallyArtinian_iff_openCover
25
Total27

AlgebraicGeometry

Definitions

NameCategoryTheorems
IsArtinianScheme πŸ“–CompData
6 mathmath: instIsArtinianSchemeSpecOfIsArtinianRingCarrier, instIsArtinianSchemeFiberOfLocallyQuasiFiniteOfQuasiCompact, instIsArtinianSchemeOfSubsingletonCarrierCarrierCommRingCatOfIsReduced, isArtinianScheme_iff, IsArtinianScheme.iff_isNoetherian_and_discreteTopology, Scheme.isArtinianScheme_Spec
IsLocallyArtinian πŸ“–CompData
15 mathmath: instIsLocallyArtinianXScheme, instIsLocallyArtinianOfDiscreteTopologyCarrierCarrierCommRingCatOfIsReduced, isLocallyArtinian_iff_of_isOpenCover, instIsLocallyArtinianOfIsEmptyCarrierCarrierCommRingCat, IsLocallyArtinian.iff_isLocallyNoetherian_and_discreteTopology, IsLocallyArtinian.of_isImmersion, isArtinianScheme_iff, IsLocallyArtinian.of_topologicalKrullDim_le_zero, instIsLocallyArtinianFiberOfLocallyQuasiFinite, IsLocallyArtinian.of_locallyQuasiFinite, IsLocallyArtinian.of_isLocallyNoetherian_of_discreteTopology, isLocallyArtinian_iff_openCover, instIsLocallyArtinianToScheme, IsArtinianScheme.toIsLocallyArtinian, Scheme.isLocallyArtinianScheme_Spec

Theorems

NameKindAssumesProvesValidatesDepends On
instIsArtinianSchemeOfSubsingletonCarrierCarrierCommRingCatOfIsReduced πŸ“–mathematicalβ€”IsArtinianSchemeβ€”instIsLocallyArtinianOfDiscreteTopologyCarrierCarrierCommRingCatOfIsReduced
Subsingleton.discreteTopology
Scheme.compactSpace_of_isAffine
instIsAffineOfFiniteOfDiscreteTopologyCarrierCarrierCommRingCat
Finite.of_subsingleton
instIsArtinianSchemeSpecOfIsArtinianRingCarrier πŸ“–mathematicalβ€”IsArtinianScheme
Spec
β€”IsArtinianScheme.iff_isNoetherian_and_discreteTopology
instIsNoetherianSpecOfIsNoetherianRingCarrier
instIsNoetherianRingOfIsArtinianRing
PrimeSpectrum.instDiscreteTopology
instIsLocallyArtinianOfDiscreteTopologyCarrierCarrierCommRingCatOfIsReduced πŸ“–mathematicalβ€”IsLocallyArtinianβ€”isEmpty_or_nonempty
instIsLocallyArtinianOfIsEmptyCarrierCarrierCommRingCat
isIntegral_iff_irreducibleSpace_and_isReduced
instPreirreducibleSpaceOfSubsingleton
isField_of_isIntegral_of_subsingleton
Scheme.isLocallyArtinianScheme_Spec
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
FiniteDimensional.finiteDimensional_self
IsLocallyArtinian.of_isImmersion
instIsAffineOfFiniteOfDiscreteTopologyCarrierCarrierCommRingCat
Finite.of_subsingleton
IsImmersion.instOfIsClosedImmersion
IsClosedImmersion.instOfIsIsoScheme
CategoryTheory.Iso.isIso_hom
isOpen_discrete
TopologicalSpace.Opens.ext
Set.ext
isOpen_iUnion
Topology.IsEmbedding.discreteTopology
Topology.IsOpenEmbedding.toIsEmbedding
Scheme.Hom.isOpenEmbedding
Scheme.instIsOpenImmersionF
isReduced_of_isOpenImmersion
isLocallyArtinian_iff_openCover
Unique.instSubsingleton
instIsLocallyArtinianOfIsEmptyCarrierCarrierCommRingCat πŸ“–mathematicalβ€”IsLocallyArtinianβ€”instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
instIsSemisimpleRingOfSubsingleton
instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensOfIsEmpty
Module.Finite.self
instIsLocallyArtinianToScheme πŸ“–mathematicalβ€”IsLocallyArtinian
Scheme.Opens.toScheme
β€”Scheme.Opens.instIsOpenImmersionΞΉ
instIsLocallyArtinianXScheme πŸ“–mathematicalβ€”IsLocallyArtinian
CategoryTheory.PreZeroHypercover.X
Scheme
Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
Scheme.precoverage
IsOpenImmersion
β€”Scheme.instIsOpenImmersionF
isArtinianScheme_iff πŸ“–mathematicalβ€”IsArtinianScheme
IsLocallyArtinian
CompactSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”β€”
isLocallyArtinian_iff_of_isOpenCover πŸ“–mathematicalTopologicalSpace.IsOpenCover
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
IsAffineOpen
IsLocallyArtinian
IsArtinianRing
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”IsLocallyArtinian.isArtinianRing_presheaf_obj
isLocallyArtinian_iff_openCover
IsLocallyArtinian.of_isImmersion
IsImmersion.instOfIsClosedImmersion
IsClosedImmersion.instOfIsIsoScheme
CategoryTheory.Iso.isIso_hom
isLocallyArtinian_iff_openCover πŸ“–mathematicalβ€”IsLocallyArtinian
CategoryTheory.PreZeroHypercover.X
Scheme
Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
Scheme.precoverage
IsOpenImmersion
β€”instIsLocallyArtinianXScheme
IsLocallyArtinian.iff_isLocallyNoetherian_and_discreteTopology
isLocallyNoetherian_iff_openCover
IsLocallyArtinian.isLocallyNoetherian
discreteTopology_iff_isOpen_singleton
Scheme.Cover.exists_eq
Scheme.instJointlySurjectivePrecoverage
Set.image_congr
Set.image_singleton
Topology.IsOpenEmbedding.isOpenMap
Scheme.Hom.isOpenEmbedding
Scheme.instIsOpenImmersionF
isOpen_discrete
IsLocallyArtinian.discreteTopology

AlgebraicGeometry.IsArtinianScheme

Theorems

NameKindAssumesProvesValidatesDepends On
finite πŸ“–mathematicalβ€”Finite
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
β€”finite_of_compact_of_discrete
toCompactSpace
AlgebraicGeometry.IsLocallyArtinian.discreteTopology
toIsLocallyArtinian
iff_isNoetherian_and_discreteTopology πŸ“–mathematicalβ€”AlgebraicGeometry.IsArtinianScheme
AlgebraicGeometry.IsNoetherian
DiscreteTopology
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”β€”
isNoetherianScheme πŸ“–mathematicalβ€”AlgebraicGeometry.IsNoetherianβ€”AlgebraicGeometry.IsLocallyArtinian.isLocallyNoetherian
toIsLocallyArtinian
toCompactSpace
toCompactSpace πŸ“–mathematicalβ€”CompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”β€”
toIsLocallyArtinian πŸ“–mathematicalβ€”AlgebraicGeometry.IsLocallyArtinianβ€”β€”

AlgebraicGeometry.IsLocallyArtinian

Theorems

NameKindAssumesProvesValidatesDepends On
discreteTopology πŸ“–mathematicalβ€”DiscreteTopology
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”discreteTopology_iff_isOpen_singleton
AlgebraicGeometry.exists_isAffineOpen_mem_and_subset
TopologicalSpace.Opens.mem_top
isArtinianRing_presheaf_obj
PrimeSpectrum.instDiscreteTopology
Homeomorph.discreteTopology
CategoryTheory.Iso.isIso_hom
Set.image_singleton
IsOpen.trans
isOpen_discrete
TopologicalSpace.Opens.is_open'
discreteTopology_of_isAffine πŸ“–mathematicalβ€”DiscreteTopology
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”discreteTopology
iff_isLocallyNoetherian_and_discreteTopology πŸ“–mathematicalβ€”AlgebraicGeometry.IsLocallyArtinian
AlgebraicGeometry.IsLocallyNoetherian
DiscreteTopology
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”isLocallyNoetherian
discreteTopology
of_isLocallyNoetherian_of_discreteTopology
isArtinianRing_of_isAffine πŸ“–mathematicalβ€”IsArtinianRing
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
AlgebraicGeometry.Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”isArtinianRing_presheaf_obj
AlgebraicGeometry.isAffineOpen_top
isArtinianRing_presheaf_obj πŸ“–mathematicalβ€”IsArtinianRing
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
AlgebraicGeometry.Scheme.Opens
Set
Set.instMembership
AlgebraicGeometry.Scheme.affineOpens
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”β€”
isLocallyNoetherian πŸ“–mathematicalβ€”AlgebraicGeometry.IsLocallyNoetherianβ€”instIsNoetherianRingOfIsArtinianRing
isArtinianRing_presheaf_obj
of_isImmersion πŸ“–mathematicalβ€”AlgebraicGeometry.IsLocallyArtinianβ€”iff_isLocallyNoetherian_and_discreteTopology
AlgebraicGeometry.LocallyOfFiniteType.isLocallyNoetherian
AlgebraicGeometry.IsImmersion.instLocallyOfFiniteType
isLocallyNoetherian
Topology.IsEmbedding.discreteTopology
discreteTopology
AlgebraicGeometry.Scheme.Hom.isEmbedding
AlgebraicGeometry.IsImmersion.toIsPreimmersion
of_isLocallyNoetherian_of_discreteTopology πŸ“–mathematicalβ€”AlgebraicGeometry.IsLocallyArtinianβ€”of_topologicalKrullDim_le_zero
topologicalKrullDim_zero_of_discreteTopology
of_topologicalKrullDim_le_zero πŸ“–mathematicalWithBot
ENat
Preorder.toLE
WithBot.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
topologicalKrullDim
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
WithBot.zero
instZeroENat
AlgebraicGeometry.IsLocallyArtinianβ€”AlgebraicGeometry.IsLocallyNoetherian.component_noetherian
isArtinianRing_iff_krullDimLE_zero
Ring.KrullDimLE.eq_1
Order.krullDimLE_iff
ringKrullDim.eq_1
Nat.cast_zero
PrimeSpectrum.topologicalKrullDim_eq_ringKrullDim
IsHomeomorph.topologicalKrullDim_eq
CategoryTheory.Iso.isIso_hom
Homeomorph.isHomeomorph
LE.le.trans
topologicalKrullDim_subspace_le

AlgebraicGeometry.Scheme

Theorems

NameKindAssumesProvesValidatesDepends On
isArtinianScheme_Spec πŸ“–mathematicalβ€”AlgebraicGeometry.IsArtinianScheme
AlgebraicGeometry.Spec
IsArtinianRing
CommRingCat.carrier
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”compactSpace_of_isAffine
AlgebraicGeometry.isAffine_Spec
isLocallyArtinianScheme_Spec πŸ“–mathematicalβ€”AlgebraicGeometry.IsLocallyArtinian
AlgebraicGeometry.Spec
IsArtinianRing
CommRingCat.carrier
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”RingEquiv.isArtinianRing
AlgebraicGeometry.IsLocallyArtinian.isArtinianRing_of_isAffine
AlgebraicGeometry.isAffine_Spec
AlgebraicGeometry.IsLocallyArtinian.of_topologicalKrullDim_le_zero
AlgebraicGeometry.instIsLocallyNoetherianSpecOfIsNoetherianRingCarrier
instIsNoetherianRingOfIsArtinianRing
topologicalKrullDim_zero_of_discreteTopology
PrimeSpectrum.instDiscreteTopology

---

← Back to Index