Documentation Verification Report

Directed

📁 Source: Mathlib/AlgebraicGeometry/Cover/Directed.lean

Statistics

MetricCount
DefinitionsofIsBasisOpensRange, trans, coconeOfLocallyDirected, functorOfLocallyDirected, functorOfLocallyDirectedHomBase, instCategoryI₀Pullback₁, intersectionOfLocallyDirected, locallyDirectedPullbackCover, trans, glueMorphismsOfLocallyDirected, glueMorphismsOverOfLocallyDirected, isColimitCoconeOfLocallyDirected, directedAffineCover, instLocallyDirectedIsOpenImmersionDirectedAffineCover, instPreorderI₀DirectedAffineCover
15
Theoremsdirected, ofIsBasisOpensRange_le_iff, ofIsBasisOpensRange_trans, property_trans, trans_comp, trans_id, w, coconeOfLocallyDirected_pt, coconeOfLocallyDirected_ι, exists_lift_trans_eq, exists_of_f_eq_f, exists_of_trans_eq_trans, functorOfLocallyDirectedHomBase_app, functorOfLocallyDirected_map, functorOfLocallyDirected_obj, instIsLocallyDirectedI₀CompFunctorOfLocallyDirectedForget, intersectionOfLocallyDirected_f, property_trans, trans_comp, trans_id, trans_map, instIsOpenImmersionMapI₀FunctorOfLocallyDirected, instIsOpenImmersionTrans, map_glueMorphismsOfLocallyDirected, map_glueMorphismsOfLocallyDirected_assoc, map_glueMorphismsOverOfLocallyDirected_left, map_glueMorphismsOverOfLocallyDirected_left_assoc, directedAffineCover_I₀, directedAffineCover_X, directedAffineCover_f, directedAffineCover_trans
31
Total46

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
directedAffineCover 📖CompOp
4 mathmath: directedAffineCover_f, directedAffineCover_I₀, directedAffineCover_X, directedAffineCover_trans
instLocallyDirectedIsOpenImmersionDirectedAffineCover 📖CompOp
1 mathmath: directedAffineCover_trans
instPreorderI₀DirectedAffineCover 📖CompOp
1 mathmath: directedAffineCover_trans

Theorems

NameKindAssumesProvesValidatesDepends On
directedAffineCover_I₀ 📖mathematical—CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
AlgebraicGeometry.IsOpenImmersion
directedAffineCover
Set.Elem
Opens
affineOpens
——
directedAffineCover_X 📖mathematical—CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
AlgebraicGeometry.IsOpenImmersion
directedAffineCover
Opens.toScheme
Opens
Set
Set.instMembership
affineOpens
——
directedAffineCover_f 📖mathematical—CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
AlgebraicGeometry.IsOpenImmersion
directedAffineCover
Opens.ι
Opens
Set
Set.instMembership
affineOpens
——
directedAffineCover_trans 📖mathematicalSet.Elem
Opens
affineOpens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
Set
Set.instMembership
Cover.trans
AlgebraicGeometry.IsOpenImmersion
directedAffineCover
Preorder.smallCategory
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
instPreorderI₀DirectedAffineCover
instLocallyDirectedIsOpenImmersionDirectedAffineCover
CategoryTheory.homOfLE
homOfLE
——

AlgebraicGeometry.Scheme.Cover

Definitions

NameCategoryTheorems
coconeOfLocallyDirected 📖CompOp
2 mathmath: coconeOfLocallyDirected_ι, coconeOfLocallyDirected_pt
functorOfLocallyDirected 📖CompOp
12 mathmath: functorOfLocallyDirected_obj, coconeOfLocallyDirected_ι, RelativeGluingData.ι_toBase, RelativeGluingData.ι_toBase_assoc, RelativeGluingData.equifibered, instIsLocallyDirectedI₀CompFunctorOfLocallyDirectedForget, functorOfLocallyDirected_map, coconeOfLocallyDirected_pt, AlgebraicGeometry.Scheme.OpenCover.instIsOpenImmersionMapI₀FunctorOfLocallyDirected, functorOfLocallyDirectedHomBase_app, ColimitGluingData.relativeGluingData_natTrans_app, RelativeGluingData.isPullback_natTrans_ι_toBase
functorOfLocallyDirectedHomBase 📖CompOp
2 mathmath: coconeOfLocallyDirected_ι, functorOfLocallyDirectedHomBase_app
instCategoryI₀Pullback₁ 📖CompOp—
intersectionOfLocallyDirected 📖CompOp
1 mathmath: intersectionOfLocallyDirected_f
locallyDirectedPullbackCover 📖CompOp—
trans 📖CompOp
20 mathmath: ColimitGluingData.cocone_ι_transitionMap, ColimitGluingData.transitionCocone_pt, ColimitGluingData.transitionMap_id, trans_id, exists_lift_trans_eq, exists_of_f_eq_f, LocallyDirected.ofIsBasisOpensRange_trans, ColimitGluingData.transitionCocone_ι_app, trans_map, functorOfLocallyDirected_map, property_trans, AlgebraicGeometry.Scheme.OpenCover.instIsOpenImmersionTrans, ColimitGluingData.cocone_ι_transitionMap_assoc, AlgebraicGeometry.Scheme.directedAffineCover_trans, ColimitGluingData.prop_trans, ColimitGluingData.trans_app_left, ColimitGluingData.transitionMap_comp, trans_comp, ColimitGluingData.functor_map, intersectionOfLocallyDirected_f

Theorems

NameKindAssumesProvesValidatesDepends On
coconeOfLocallyDirected_pt 📖mathematical—CategoryTheory.Limits.Cocone.pt
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
functorOfLocallyDirected
coconeOfLocallyDirected
——
coconeOfLocallyDirected_ι 📖mathematical—CategoryTheory.Limits.Cocone.ι
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
functorOfLocallyDirected
coconeOfLocallyDirected
functorOfLocallyDirectedHomBase
——
exists_lift_trans_eq 📖mathematical—DFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme.Pullback.instHasPullback
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.Limits.pullback.lift
trans
—AlgebraicGeometry.Scheme.Pullback.instHasPullback
LocallyDirected.directed
exists_of_f_eq_f 📖mathematicalDFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
trans—AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.Scheme.Pullback.exists_preimage_pullback
exists_lift_trans_eq
CategoryTheory.Limits.limit.lift_π
exists_of_trans_eq_trans 📖—DFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
trans
——trans_map
AlgebraicGeometry.Scheme.Hom.comp_base
CategoryTheory.ConcreteCategory.comp_apply
AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.Scheme.Pullback.exists_preimage_pullback
exists_lift_trans_eq
CategoryTheory.Limits.limit.lift_π
functorOfLocallyDirectedHomBase_app 📖mathematical—CategoryTheory.NatTrans.app
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
functorOfLocallyDirected
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
functorOfLocallyDirectedHomBase
CategoryTheory.PreZeroHypercover.f
——
functorOfLocallyDirected_map 📖mathematical—CategoryTheory.Functor.map
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
functorOfLocallyDirected
trans
——
functorOfLocallyDirected_obj 📖mathematical—CategoryTheory.Functor.obj
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
functorOfLocallyDirected
CategoryTheory.PreZeroHypercover.X
——
instIsLocallyDirectedI₀CompFunctorOfLocallyDirectedForget 📖mathematical—CategoryTheory.Functor.IsLocallyDirected
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.Functor.comp
CategoryTheory.types
functorOfLocallyDirected
AlgebraicGeometry.Scheme.forget
—trans_map
AlgebraicGeometry.Scheme.Hom.comp_base
CategoryTheory.ConcreteCategory.comp_apply
AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.Scheme.Pullback.exists_preimage_pullback
exists_lift_trans_eq
CategoryTheory.Limits.limit.lift_π
intersectionOfLocallyDirected_f 📖mathematical—CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.Scheme.Pullback.instHasPullback
intersectionOfLocallyDirected
CategoryTheory.Limits.pullback.lift
CategoryTheory.PreZeroHypercover.I₀
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
trans
—AlgebraicGeometry.Scheme.Pullback.instHasPullback
property_trans 📖mathematical—CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
trans
—LocallyDirected.property_trans
trans_comp 📖mathematical—trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
—LocallyDirected.trans_comp
trans_id 📖mathematical—trans
CategoryTheory.CategoryStruct.id
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
—LocallyDirected.trans_id
trans_map 📖mathematical—CategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
trans
CategoryTheory.PreZeroHypercover.f
—LocallyDirected.w

AlgebraicGeometry.Scheme.Cover.LocallyDirected

Definitions

NameCategoryTheorems
ofIsBasisOpensRange 📖CompOp
1 mathmath: ofIsBasisOpensRange_trans
trans 📖CompOp
5 mathmath: directed, trans_comp, trans_id, property_trans, w

Theorems

NameKindAssumesProvesValidatesDepends On
directed 📖mathematical—DFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme.Pullback.instHasPullback
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.Limits.pullback.lift
trans
w
——
ofIsBasisOpensRange_le_iff 📖—CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
Preorder.toLE
AlgebraicGeometry.Scheme.Opens
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
AlgebraicGeometry.Scheme.Hom.opensRange
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme.instIsOpenImmersionF
——AlgebraicGeometry.Scheme.instIsOpenImmersionF
ofIsBasisOpensRange_trans 📖mathematicalCategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
Preorder.toLE
AlgebraicGeometry.Scheme.Opens
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
AlgebraicGeometry.Scheme.Hom.opensRange
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme.instIsOpenImmersionF
TopologicalSpace.Opens.IsBasis
Set.range
TopologicalSpace.Opens
AlgebraicGeometry.Scheme.Cover.trans
Preorder.smallCategory
ofIsBasisOpensRange
CategoryTheory.homOfLE
AlgebraicGeometry.IsOpenImmersion.lift
—AlgebraicGeometry.Scheme.instIsOpenImmersionF
property_trans 📖mathematical—CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
trans
——
trans_comp 📖mathematical—trans
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
——
trans_id 📖mathematical—trans
CategoryTheory.CategoryStruct.id
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
——
w 📖mathematical—CategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
trans
CategoryTheory.PreZeroHypercover.f
——

AlgebraicGeometry.Scheme.OpenCover

Definitions

NameCategoryTheorems
glueMorphismsOfLocallyDirected 📖CompOp
2 mathmath: map_glueMorphismsOfLocallyDirected_assoc, map_glueMorphismsOfLocallyDirected
glueMorphismsOverOfLocallyDirected 📖CompOp
2 mathmath: map_glueMorphismsOverOfLocallyDirected_left_assoc, map_glueMorphismsOverOfLocallyDirected_left
isColimitCoconeOfLocallyDirected 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
instIsOpenImmersionMapI₀FunctorOfLocallyDirected 📖mathematical—AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.PreZeroHypercover.I₀
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.Scheme.Cover.functorOfLocallyDirected
CategoryTheory.Functor.map
—AlgebraicGeometry.Scheme.Cover.property_trans
instIsOpenImmersionTrans 📖mathematical—AlgebraicGeometry.IsOpenImmersion
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.Scheme.Cover.trans
—AlgebraicGeometry.Scheme.Cover.property_trans
map_glueMorphismsOfLocallyDirected 📖mathematicalCategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
AlgebraicGeometry.Scheme.Cover.trans
CategoryTheory.PreZeroHypercover.f
glueMorphismsOfLocallyDirected
—AlgebraicGeometry.Scheme.Cover.ι_glueMorphisms
map_glueMorphismsOfLocallyDirected_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
AlgebraicGeometry.Scheme.Cover.trans
CategoryTheory.PreZeroHypercover.f
glueMorphismsOfLocallyDirected
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_glueMorphismsOfLocallyDirected
map_glueMorphismsOverOfLocallyDirected_left 📖mathematicalCategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
AlgebraicGeometry.Scheme.Cover.trans
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.PreZeroHypercover.f
CategoryTheory.CommaMorphism.left
glueMorphismsOverOfLocallyDirected
—map_glueMorphismsOfLocallyDirected
map_glueMorphismsOverOfLocallyDirected_left_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
AlgebraicGeometry.Scheme.Cover.trans
CategoryTheory.Functor.obj
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.PreZeroHypercover.f
CategoryTheory.CommaMorphism.left
glueMorphismsOverOfLocallyDirected
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_glueMorphismsOverOfLocallyDirected_left

---

← Back to Index