Documentation Verification Report

MorphismProperty

πŸ“ Source: Mathlib/AlgebraicGeometry/Cover/MorphismProperty.lean

Statistics

MetricCount
DefinitionsAffineCover, Iβ‚€, J, X, cover, f, idx, map, obj, app, comp, id, idx, add, changeProp, copy, idx, mkOfCovers, pullbackCover, pullbackCover', pullbackHom, pushforwardIso, ulift, coverOfIsIso
24
Theoremscover_Iβ‚€, cover_X, cover_f, covers, map_prop, w, add_toPreZeroHypercover, comp_app, comp_idx_apply, copy_Iβ‚€, copy_X, copy_f, covers, exists_eq, iUnion_range, id_app, id_idx_apply, map_prop, mkOfCovers_Iβ‚€, mkOfCovers_X, mkOfCovers_f, nonempty_of_nonempty, pullbackHom_map, pullbackHom_map_assoc, pushforwardIso_Iβ‚€, pushforwardIso_X, pushforwardIso_f, ulift_Iβ‚€, ulift_X, ulift_f, exists_eq, coverOfIsIso_Iβ‚€, coverOfIsIso_X, coverOfIsIso_f, instJointlySurjectivePrecoverage, instSmallPrecoverage, presieveβ‚€_mem_precoverage_iff
37
Total61

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
AffineCover πŸ“–CompDataβ€”
coverOfIsIso πŸ“–CompOp
5 mathmath: coverOfIsIso_Iβ‚€, AlgebraicGeometry.QuasiCompactCover.instCoverOfIsIso, coverOfIsIso_X, AlgebraicGeometry.instIsAffineXSchemeCoverOfIsIsoIsOpenImmersionId, coverOfIsIso_f

Theorems

NameKindAssumesProvesValidatesDepends On
coverOfIsIso_Iβ‚€ πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Iβ‚€
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
coverOfIsIso
β€”β€”
coverOfIsIso_X πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
coverOfIsIso
β€”β€”
coverOfIsIso_f πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
coverOfIsIso
β€”β€”
instJointlySurjectivePrecoverage πŸ“–mathematicalβ€”JointlySurjective
precoverage
β€”CategoryTheory.Presieve.mem_comap_jointlySurjectivePrecoverage_iff
jointlySurjectivePrecoverage.eq_1
instSmallPrecoverage πŸ“–mathematicalβ€”CategoryTheory.Precoverage.Small
AlgebraicGeometry.Scheme
instCategory
precoverage
β€”instJointlySurjectivePrecoverage
CategoryTheory.Precoverage.ZeroHypercover.memβ‚€
presieveβ‚€_mem_precoverage_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
precoverage
CategoryTheory.PreZeroHypercover.presieveβ‚€
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
Set.range
CategoryTheory.PreZeroHypercover.X
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
β€”β€”

AlgebraicGeometry.Scheme.AffineCover

Definitions

NameCategoryTheorems
Iβ‚€ πŸ“–CompOp
5 mathmath: cover_Iβ‚€, AlgebraicGeometry.Scheme.affineOpenCover_Iβ‚€, AlgebraicGeometry.QuasiCompactCover.exists_hom, AlgebraicGeometry.Scheme.AffineOpenCover.openCover_Iβ‚€, AlgebraicGeometry.Scheme.affineOpenCoverOfSpanRangeEqTop_Iβ‚€
J πŸ“–CompOpβ€”
X πŸ“–CompOp
11 mathmath: map_prop, AlgebraicGeometry.Scheme.IdealSheafData.subschemeCover_map_subschemeΞΉ, AlgebraicGeometry.Scheme.AffineOpenCover.instIsOpenImmersionF, AlgebraicGeometry.Scheme.affineOpenCoverOfSpanRangeEqTop_X_carrier, AlgebraicGeometry.Scheme.IdealSheafData.opensRange_subschemeCover_map, covers, cover_X, AlgebraicGeometry.Scheme.IdealSheafData.subSchemeCover_map_inclusion_assoc, AlgebraicGeometry.Scheme.IdealSheafData.subSchemeCover_map_inclusion, AlgebraicGeometry.Scheme.affineOpenCover_X, AlgebraicGeometry.Scheme.AffineOpenCover.openCover_X
cover πŸ“–CompOp
4 mathmath: cover_Iβ‚€, AlgebraicGeometry.QuasiCompactCover.exists_hom, cover_f, cover_X
f πŸ“–CompOp
11 mathmath: AlgebraicGeometry.Scheme.AffineOpenCover.openCover_f, map_prop, AlgebraicGeometry.Scheme.IdealSheafData.subschemeCover_map_subschemeΞΉ, AlgebraicGeometry.Scheme.AffineOpenCover.instIsOpenImmersionF, cover_f, AlgebraicGeometry.Scheme.IdealSheafData.opensRange_subschemeCover_map, covers, AlgebraicGeometry.Scheme.IdealSheafData.subSchemeCover_map_inclusion_assoc, AlgebraicGeometry.Scheme.IdealSheafData.subSchemeCover_map_inclusion, AlgebraicGeometry.Scheme.affineOpenCoverOfSpanRangeEqTop_f, AlgebraicGeometry.Scheme.affineOpenCover_f
idx πŸ“–CompOp
3 mathmath: AlgebraicGeometry.Scheme.affineOpenCover_idx, covers, AlgebraicGeometry.Scheme.affineOpenCoverOfSpanRangeEqTop_idx
map πŸ“–CompOpβ€”
obj πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cover_Iβ‚€ πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Iβ‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
cover
Iβ‚€
β€”β€”
cover_X πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
cover
AlgebraicGeometry.Spec
X
β€”β€”
cover_f πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
cover
f
β€”β€”
covers πŸ“–mathematicalβ€”TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
Set
Set.instMembership
Set.range
AlgebraicGeometry.Spec
X
idx
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
f
β€”β€”
map_prop πŸ“–mathematicalβ€”AlgebraicGeometry.Spec
X
f
β€”β€”

AlgebraicGeometry.Scheme.Cover

Definitions

NameCategoryTheorems
add πŸ“–CompOp
1 mathmath: add_toPreZeroHypercover
changeProp πŸ“–CompOpβ€”
copy πŸ“–CompOp
3 mathmath: copy_f, copy_X, copy_Iβ‚€
idx πŸ“–CompOp
5 mathmath: AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_f, ulift_X, covers, ulift_f, AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_X
mkOfCovers πŸ“–CompOp
3 mathmath: mkOfCovers_Iβ‚€, mkOfCovers_X, mkOfCovers_f
pullbackCover πŸ“–CompOpβ€”
pullbackCover' πŸ“–CompOpβ€”
pullbackHom πŸ“–CompOp
10 mathmath: AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom, AlgebraicGeometry.HasAffineProperty.iff_of_openCover, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom_assoc, AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map, AlgebraicGeometry.IsZariskiLocalAtTarget.iff_of_openCover, AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map_assoc, pullbackHom_map_assoc, pullbackHom_map, AlgebraicGeometry.Scheme.Pullback.diagonalCover_map
pushforwardIso πŸ“–CompOp
3 mathmath: pushforwardIso_f, pushforwardIso_Iβ‚€, pushforwardIso_X
ulift πŸ“–CompOp
3 mathmath: ulift_X, ulift_f, ulift_Iβ‚€

Theorems

NameKindAssumesProvesValidatesDepends On
add_toPreZeroHypercover πŸ“–mathematicalβ€”CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.precoverage
add
CategoryTheory.PreZeroHypercover.add
β€”β€”
comp_app πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Hom.hβ‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreZeroHypercover
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.Hom.sβ‚€
β€”CategoryTheory.PreZeroHypercover.comp_hβ‚€
comp_idx_apply πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Hom.sβ‚€
CategoryTheory.CategoryStruct.comp
CategoryTheory.PreZeroHypercover
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.instCategory
β€”CategoryTheory.PreZeroHypercover.comp_sβ‚€
copy_Iβ‚€ πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
DFunLike.coe
Equiv
CategoryTheory.PreZeroHypercover.Iβ‚€
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover.f
copyβ€”β€”
copy_X πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
DFunLike.coe
Equiv
CategoryTheory.PreZeroHypercover.Iβ‚€
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover.f
copyβ€”β€”
copy_f πŸ“–mathematicalCategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
DFunLike.coe
Equiv
CategoryTheory.PreZeroHypercover.Iβ‚€
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Iso.hom
CategoryTheory.PreZeroHypercover.f
copyβ€”β€”
covers πŸ“–mathematicalβ€”TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
Set
Set.instMembership
Set.range
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
idx
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
β€”exists_eq
exists_eq πŸ“–mathematicalβ€”DFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
β€”AlgebraicGeometry.Scheme.JointlySurjective.exists_eq
CategoryTheory.Precoverage.ZeroHypercover.memβ‚€
iUnion_range πŸ“–mathematicalβ€”Set.iUnion
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.Iβ‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
Set.range
CategoryTheory.PreZeroHypercover.X
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
Set.univ
β€”Set.eq_univ_iff_forall
Set.mem_iUnion
exists_eq
id_app πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Hom.hβ‚€
CategoryTheory.CategoryStruct.id
CategoryTheory.PreZeroHypercover
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.instCategory
CategoryTheory.PreZeroHypercover.X
β€”CategoryTheory.PreZeroHypercover.id_hβ‚€
id_idx_apply πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Hom.sβ‚€
CategoryTheory.CategoryStruct.id
CategoryTheory.PreZeroHypercover
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.instCategory
β€”CategoryTheory.PreZeroHypercover.id_sβ‚€
map_prop πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.PreZeroHypercover.f
β€”CategoryTheory.Precoverage.ZeroHypercover.memβ‚€
mkOfCovers_Iβ‚€ πŸ“–mathematicalDFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.Iβ‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
mkOfCovers
β€”β€”
mkOfCovers_X πŸ“–mathematicalDFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
mkOfCovers
β€”β€”
mkOfCovers_f πŸ“–mathematicalDFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
mkOfCovers
β€”β€”
nonempty_of_nonempty πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Iβ‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
β€”exists_eq
pullbackHom_map πŸ“–mathematicalCategoryTheory.Limits.HasPullback
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.PreZeroHypercover.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Precoverage.ZeroHypercover.pullback₁
AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
pullbackHom
β€”CategoryTheory.Limits.pullback.condition
pullbackHom_map_assoc πŸ“–mathematicalCategoryTheory.Limits.HasPullback
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.PreZeroHypercover.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Precoverage.ZeroHypercover.pullback₁
AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
pullbackHom
β€”AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pullbackHom_map
pushforwardIso_Iβ‚€ πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Iβ‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
pushforwardIso
β€”β€”
pushforwardIso_X πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
pushforwardIso
β€”β€”
pushforwardIso_f πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
pushforwardIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
β€”AlgebraicGeometry.Scheme.instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition
ulift_Iβ‚€ πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.Iβ‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
ulift
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
β€”β€”
ulift_X πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
ulift
idx
AlgebraicGeometry.Scheme.instJointlySurjectivePrecoverage
β€”β€”
ulift_f πŸ“–mathematicalβ€”CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
ulift
idx
AlgebraicGeometry.Scheme.instJointlySurjectivePrecoverage
β€”AlgebraicGeometry.Scheme.instJointlySurjectivePrecoverage

AlgebraicGeometry.Scheme.Cover.Hom

Definitions

NameCategoryTheorems
app πŸ“–CompOpβ€”
comp πŸ“–CompOpβ€”
id πŸ“–CompOpβ€”
idx πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
w πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.Hom.sβ‚€
CategoryTheory.PreZeroHypercover.Hom.hβ‚€
CategoryTheory.PreZeroHypercover.f
β€”CategoryTheory.PreZeroHypercover.Hom.wβ‚€

AlgebraicGeometry.Scheme.JointlySurjective

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq πŸ“–mathematicalCategoryTheory.Presieve
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
Set.range
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
β€”β€”

---

← Back to Index