Documentation Verification Report

QuasiCompact

šŸ“ Source: Mathlib/AlgebraicGeometry/Cover/QuasiCompact.lean

Statistics

MetricCount
DefinitionsQuasiCompactCover, ulift, uliftHom, quasiCompactCover
4
TheoremsisCompactOpenCovered, exists_hom, exists_isAffineOpen_of_isCompact, homCover, inst, instBindScheme, instCoverOfIsIso, instPullback₁Scheme, instPullbackā‚‚Scheme, instSumScheme, instSumScheme_1, instUlift, isCompactOpenCovered_of_isAffineOpen, isCompactOpenCovered_of_isCompact, of_finite, of_hom, of_isOpenMap, singleton, isClosedUnderIsomorphisms_quasiCompactCover, quasiCompactCover_iff, quasiCompactCover_iff
21
Total25

AlgebraicGeometry

Definitions

NameCategoryTheorems
QuasiCompactCover šŸ“–CompData
16 mathmath: QuasiCompactCover.of_finite, QuasiCompactCover.instCoverOfIsIso, Scheme.quasiCompactCover_shrink_iff, QuasiCompactCover.of_hom, QuasiCompactCover.of_isOpenMap, QuasiCompactCover.instUlift, QuasiCompactCover.inst, QuasiCompactCover.instPullback₁Scheme, Scheme.presieveā‚€_mem_qcPrecoverage_iff, Scheme.quasiCompactCover_iff, QuasiCompactCover.instSumScheme_1, QuasiCompactCover.singleton, QuasiCompactCover.homCover, quasiCompactCover_iff, QuasiCompactCover.instPullbackā‚‚Scheme, QuasiCompactCover.instSumScheme

Theorems

NameKindAssumesProvesValidatesDepends On
quasiCompactCover_iff šŸ“–mathematical—QuasiCompactCover
IsCompactOpenCovered
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.Iā‚€
Scheme
Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
Scheme.Opens
TopologicalSpace.Opens.instSetLike
——

AlgebraicGeometry.IsAffineOpen

Theorems

NameKindAssumesProvesValidatesDepends On
isCompactOpenCovered šŸ“–mathematical—IsCompactOpenCovered
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.Iā‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
AlgebraicGeometry.Scheme.Opens
TopologicalSpace.Opens.instSetLike
—AlgebraicGeometry.QuasiCompactCover.isCompactOpenCovered_of_isAffineOpen

AlgebraicGeometry.QuasiCompactCover

Definitions

NameCategoryTheorems
ulift šŸ“–CompOp
1 mathmath: instUlift
uliftHom šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
exists_hom šŸ“–mathematical—Finite
AlgebraicGeometry.Scheme.AffineCover.Iā‚€
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.Scheme.AffineCover.cover
CategoryTheory.PreZeroHypercover.Hom.sā‚€
CategoryTheory.PreZeroHypercover.Hom.hā‚€
—exists_isAffineOpen_of_isCompact
isCompact_univ
AlgebraicGeometry.Scheme.Hom.comp_apply
AlgebraicGeometry.IsAffineOpen.isoSpec_inv_ι
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.MorphismProperty.RespectsLeft.precomp
AlgebraicGeometry.IsAffineOpen.isOpenImmersion_fromSpec
AlgebraicGeometry.Scheme.Cover.map_prop
instFiniteULift
Finite.of_fintype
Set.image_congr
exists_isAffineOpen_of_isCompact šŸ“–mathematicalIsCompact
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
AlgebraicGeometry.Scheme.Opens
TopologicalSpace.Opens.instSetLike
AlgebraicGeometry.IsAffineOpen
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
Set.iUnion
Set.image
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
—IsCompactOpenCovered.exists_mem_of_isBasis
AlgebraicGeometry.Scheme.isBasis_affineOpens
AlgebraicGeometry.IsAffineOpen.isCompact
isCompactOpenCovered_of_isCompact
homCover šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.Scheme.Hom.cover
—of_finite
AlgebraicGeometry.Scheme.instJointlySurjectivePrecoverage
Finite.of_fintype
inst šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
—of_isOpenMap
AlgebraicGeometry.Scheme.instJointlySurjectivePrecoverage
Topology.IsOpenEmbedding.isOpenMap
AlgebraicGeometry.Scheme.Hom.isOpenEmbedding
AlgebraicGeometry.Scheme.instIsOpenImmersionF
instBindScheme šŸ“–mathematicalAlgebraicGeometry.QuasiCompactCover
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.bind—AlgebraicGeometry.IsAffineOpen.isCompactOpenCovered
isCompactOpenCovered_of_isCompact
IsCompactOpenCovered.of_finite
Finite.instSigma
Set.image_congr
Set.iUnion_sigma
Set.iUnion_subtype
Set.iUnion_congr_Prop
Set.image_iUnion
Set.image_image
instCoverOfIsIso šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.Scheme.coverOfIsIso
—of_isOpenMap
AlgebraicGeometry.Scheme.instJointlySurjectivePrecoverage
Homeomorph.isOpenMap
instPullback₁Scheme šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover
CategoryTheory.PreZeroHypercover.pullback₁
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
—AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.IsAffineOpen.isCompactOpenCovered
AlgebraicGeometry.IsAffineOpen.isCompact_pullback_inf
Set.image_congr
instIsConcreteLE
Set.iUnion_congr_Prop
Set.preimage_iUnion
Set.subset_iUnion_of_subset
Set.subset_preimage_image
subset_antisymm
Set.instAntisymmSubset
AlgebraicGeometry.Scheme.Pullback.exists_preimage_pullback
IsCompactOpenCovered.of_isCompact_of_forall_exists_isCompactOpenCovered
AlgebraicGeometry.IsAffineOpen.isCompact
TopologicalSpace.Opens.isBasis_iff_nbhd
AlgebraicGeometry.Scheme.isBasis_affineOpens
TopologicalSpace.Opens.mem_top
le_trans
inf_le_right
TopologicalSpace.Opens.is_open'
inf_le_left
instPullbackā‚‚Scheme šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover
CategoryTheory.PreZeroHypercover.pullbackā‚‚
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
—of_hom
AlgebraicGeometry.Scheme.Pullback.instHasPullback
instPullback₁Scheme
instSumScheme šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover
CategoryTheory.PreZeroHypercover.sum
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
—of_hom
instSumScheme_1 šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover
CategoryTheory.PreZeroHypercover.sum
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
—of_hom
instUlift šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover
ulift
—exists_isAffineOpen_of_isCompact
AlgebraicGeometry.IsAffineOpen.isCompact
IsCompactOpenCovered.of_finite
Finite.of_fintype
isCompactOpenCovered_of_isAffineOpen šŸ“–mathematical—IsCompactOpenCovered
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.Iā‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
AlgebraicGeometry.Scheme.Opens
TopologicalSpace.Opens.instSetLike
——
isCompactOpenCovered_of_isCompact šŸ“–mathematicalIsCompact
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
AlgebraicGeometry.Scheme.Opens
TopologicalSpace.Opens.instSetLike
IsCompactOpenCovered
CategoryTheory.PreZeroHypercover.Iā‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.PreZeroHypercover.X
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
—TopologicalSpace.Opens.IsBasis.exists_finite_of_isCompact
AlgebraicGeometry.Scheme.isBasis_affineOpens
IsCompactOpenCovered.of_biUnion_eq_of_finite
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.biUnion_and'
Set.iUnion_iUnion_eq_right
Set.Finite.image
AlgebraicGeometry.IsAffineOpen.isCompactOpenCovered
of_finite šŸ“–mathematicalAlgebraicGeometry.QuasiCompact
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.QuasiCompactCover—IsCompactOpenCovered.of_finite_of_isSpectralMap
AlgebraicGeometry.Scheme.Hom.isSpectralMap
AlgebraicGeometry.Scheme.Cover.covers
TopologicalSpace.Opens.is_open'
AlgebraicGeometry.IsAffineOpen.isCompact
of_hom šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover—IsCompactOpenCovered.of_comp
AlgebraicGeometry.instPrespectralSpaceCarrierCarrierCommRingCat
AlgebraicGeometry.Scheme.Hom.continuous
CategoryTheory.PreZeroHypercover.Hom.wā‚€
TopologicalSpace.Opens.is_open'
AlgebraicGeometry.IsAffineOpen.isCompactOpenCovered
of_isOpenMap šŸ“–mathematicalIsOpenMap
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.QuasiCompactCover—IsCompactOpenCovered.of_isOpenMap
AlgebraicGeometry.instPrespectralSpaceCarrierCarrierCommRingCat
AlgebraicGeometry.Scheme.Hom.continuous
AlgebraicGeometry.Scheme.Cover.covers
TopologicalSpace.Opens.is_open'
AlgebraicGeometry.IsAffineOpen.isCompact
singleton šŸ“–mathematical—AlgebraicGeometry.QuasiCompactCover
CategoryTheory.PreZeroHypercover.singleton
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
—homCover

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
quasiCompactCover šŸ“–CompOp
3 mathmath: isClosedUnderIsomorphisms_quasiCompactCover, quasiCompactCover_iff, qcCoverFamily_property

Theorems

NameKindAssumesProvesValidatesDepends On
isClosedUnderIsomorphisms_quasiCompactCover šŸ“–mathematical—CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
CategoryTheory.PreZeroHypercover
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.PreZeroHypercover.instCategory
quasiCompactCover
—AlgebraicGeometry.QuasiCompactCover.of_hom
quasiCompactCover_iff šŸ“–mathematical—quasiCompactCover
AlgebraicGeometry.QuasiCompactCover
——

---

← Back to Index