Documentation Verification Report

Basic

πŸ“ Source: Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian/Basic.lean

Statistics

MetricCount
DefinitionsEquation, Nonsingular, NonsingularLift, PointClass, instMulActionForallFinOfNatNat, instSMulForallFinOfNatNat, instSetoidForallFinOfNatNat, polynomial, polynomialX, polynomialY, polynomialZ, toAffine, toJacobian
13
TheoremsbaseChange, map, X_eq_iff, X_eq_of_equiv, X_ne_zero_of_Z_eq_zero, Y_eq_iff, Y_eq_of_equiv, Y_ne_zero_of_Z_eq_zero, Z_eq_zero_of_equiv, baseChange_equation, baseChange_nonsingular, baseChange_polynomial, baseChange_polynomialX, baseChange_polynomialY, baseChange_polynomialZ, comp_equiv_comp, comp_fin3, comp_smul, equation_iff, equation_of_Z_eq_zero, equation_of_Z_ne_zero, equation_of_equiv, equation_smul, equation_some, equation_zero, equiv_iff_eq_of_Z_eq, equiv_iff_eq_of_Z_eq', equiv_of_X_eq_of_Y_eq, equiv_of_Z_eq_zero, equiv_some_of_Z_ne_zero, equiv_zero_of_Z_eq_zero, eval_polynomial, eval_polynomialX, eval_polynomialX_of_Z_ne_zero, eval_polynomialY, eval_polynomialY_of_Z_ne_zero, eval_polynomialZ, eval_polynomial_of_Z_ne_zero, fin3_def, fin3_def_ext, isUnit_X_of_Z_eq_zero, isUnit_Y_of_Z_eq_zero, map_equation, map_nonsingular, map_polynomial, map_polynomialX, map_polynomialY, map_polynomialZ, nonsingularLift_iff, nonsingularLift_some, nonsingularLift_zero, nonsingular_iff, nonsingular_iff_of_Z_ne_zero, nonsingular_of_Z_eq_zero, nonsingular_of_Z_ne_zero, nonsingular_of_equiv, nonsingular_smul, nonsingular_some, nonsingular_zero, not_equiv_of_X_ne, not_equiv_of_Y_ne, not_equiv_of_Z_eq_zero_left, not_equiv_of_Z_eq_zero_right, polynomialX_eq, polynomialY_eq, polynomialZ_eq, polynomial_relation, smul_eq, smul_equiv, smul_equiv_smul, smul_fin3, smul_fin3_ext
72
Total85

WeierstrassCurve

Definitions

NameCategoryTheorems
toJacobian πŸ“–CompOp
38 mathmath: Jacobian.map_addX, Jacobian.map_equation, Jacobian.map_dblX, Jacobian.baseChange_polynomialZ, Jacobian.map_negDblY, Jacobian.map_negY, Jacobian.map_dblZ, Jacobian.baseChange_nonsingular, Jacobian.baseChange_addX, Jacobian.map_add, Jacobian.baseChange_equation, Jacobian.baseChange_addXYZ, Jacobian.baseChange_dblX, Jacobian.baseChange_negDblY, Jacobian.baseChange_polynomialY, Jacobian.baseChange_dblY, Jacobian.map_dblXYZ, Jacobian.map_addY, Jacobian.baseChange_dblU, Jacobian.baseChange_polynomial, Jacobian.map_nonsingular, Jacobian.baseChange_neg, Jacobian.baseChange_dblXYZ, Jacobian.map_polynomialZ, Jacobian.baseChange_dblZ, Jacobian.baseChange_polynomialX, Jacobian.Equation.map, Jacobian.map_negAddY, Jacobian.map_polynomial, Jacobian.map_dblY, Jacobian.map_dblU, Jacobian.baseChange_negY, Jacobian.map_polynomialY, Jacobian.baseChange_addY, Jacobian.map_polynomialX, Jacobian.map_neg, Jacobian.map_addXYZ, Jacobian.baseChange_negAddY

WeierstrassCurve.Jacobian

Definitions

NameCategoryTheorems
Equation πŸ“–MathDef
13 mathmath: nonsingular_iff_of_Y_eq_negY, map_equation, equation_of_equiv, baseChange_equation, nonsingular_of_Z_eq_zero, equation_iff, equation_of_Z_eq_zero, equation_smul, equation_zero, equation_some, equation_of_Z_ne_zero, nonsingular_iff, nonsingular_iff_of_Z_ne_zero
Nonsingular πŸ“–MathDef
14 mathmath: nonsingular_iff_of_Y_eq_negY, Point.toAffineLift_some, nonsingularLift_iff, baseChange_nonsingular, Point.toAffineLift_of_Z_ne_zero, nonsingular_of_Z_eq_zero, map_nonsingular, nonsingular_smul, nonsingular_some, nonsingular_of_Z_ne_zero, nonsingular_zero, nonsingular_of_equiv, nonsingular_iff, nonsingular_iff_of_Z_ne_zero
NonsingularLift πŸ“–MathDef
5 mathmath: Point.nonsingular, Point.fromAffine_some, nonsingularLift_iff, nonsingularLift_some, nonsingularLift_zero
PointClass πŸ“–CompOpβ€”
instMulActionForallFinOfNatNat πŸ“–CompOp
15 mathmath: Point.fromAffine_some, negMap_of_Z_ne_zero, nonsingularLift_iff, negMap_of_Z_eq_zero, nonsingularLift_some, addMap_of_Z_ne_zero, addMap_of_Z_eq_zero_right, nonsingularLift_zero, addMap_of_Z_eq_zero_left, Point.zero_point, Point.zero_def, smul_eq, addMap_eq, negMap_eq, addMap_of_Y_eq
instSMulForallFinOfNatNat πŸ“–CompOp
44 mathmath: addXYZ_of_Z_ne_zero, add_of_Y_ne', addZ_smul, addXYZ_of_X_eq, add_of_Y_eq, smul_fin3, addY_smul, dblZ_smul, add_smul_of_not_equiv, dblXYZ_of_Z_ne_zero, add_smul_equiv, dblY_smul, dblX_smul, addXYZ_smul, negDblY_smul, negAddY_smul, addXYZ_of_Z_eq_zero_right, addXYZ_neg, nonsingular_smul, add_of_Z_eq_zero_left, add_of_X_ne, Point.toAffine_smul, addX_smul, dblXYZ_of_Z_eq_zero, dblU_smul, negY_smul, smul_fin3_ext, equation_smul, dblXYZ_smul, addU_smul, smul_eq, neg_of_Z_ne_zero, comp_smul, smul_equiv_smul, add_of_Z_eq_zero_right, dblXYZ_of_Y_eq, addXYZ_of_Z_eq_zero_left, add_of_Z_eq_zero, smul_equiv, neg_smul, add_smul_of_equiv, neg_smul_equiv, neg_of_Z_eq_zero, add_of_Y_ne
instSetoidForallFinOfNatNat πŸ“–CompOp
15 mathmath: not_equiv_of_Y_ne, comp_equiv_comp, equiv_zero_of_Z_eq_zero, add_smul_equiv, equiv_iff_eq_of_Z_eq, not_equiv_of_X_ne, equiv_iff_eq_of_Z_eq', equiv_of_X_eq_of_Y_eq, not_equiv_of_Z_eq_zero_left, smul_equiv_smul, not_equiv_of_Z_eq_zero_right, equiv_of_Z_eq_zero, equiv_some_of_Z_ne_zero, smul_equiv, neg_smul_equiv
polynomial πŸ“–CompOp
5 mathmath: polynomial_relation, baseChange_polynomial, eval_polynomial, map_polynomial, eval_polynomial_of_Z_ne_zero
polynomialX πŸ“–CompOp
6 mathmath: eval_polynomialX_of_Z_ne_zero, eval_polynomialX, polynomial_relation, baseChange_polynomialX, polynomialX_eq, map_polynomialX
polynomialY πŸ“–CompOp
6 mathmath: eval_polynomialY, polynomialY_eq, eval_polynomialY_of_Z_ne_zero, polynomial_relation, baseChange_polynomialY, map_polynomialY
polynomialZ πŸ“–CompOp
5 mathmath: baseChange_polynomialZ, polynomial_relation, polynomialZ_eq, map_polynomialZ, eval_polynomialZ
toAffine πŸ“–CompOp
39 mathmath: addXYZ_of_Z_ne_zero, Point.toAffineLift_neg, Point.toAffine_of_Z_eq_zero, add_of_Y_ne', Point.toAffineLift_some, dblX_of_Z_ne_zero, Point.toAffine_of_Z_ne_zero, negY_of_Z_ne_zero, eval_polynomialX_of_Z_ne_zero, Point.toAffine_neg, negMap_of_Z_ne_zero, eval_polynomialY_of_Z_ne_zero, dblXYZ_of_Z_ne_zero, addX_of_Z_ne_zero, nonsingularLift_some, Point.toAffineLift_of_Z_ne_zero, addY_of_Z_ne_zero, dblY_of_Z_ne_zero, addMap_of_Z_ne_zero, Point.toAffineLift_add, Point.toAffineAddEquiv_apply, Point.toAffine_add, Point.toAffine_some, add_of_X_ne, Y_eq_iff', negAddY_of_Z_ne_zero, eval_polynomial_of_Z_ne_zero, nonsingular_some, nonsingular_of_Z_ne_zero, Point.toAffineLift_zero, Point.toAffine_zero, negDblY_of_Z_ne_zero, equation_some, Point.toAffineAddEquiv_symm_apply, neg_of_Z_ne_zero, equation_of_Z_ne_zero, Point.toAffine_of_singular, Point.toAffineLift_of_Z_eq_zero, Point.fromAffine_zero

Theorems

NameKindAssumesProvesValidatesDepends On
X_eq_iff πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
β€”div_eq_div_iff
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
X_eq_of_equiv πŸ“–mathematicalinstSetoidForallFinOfNatNatDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
X_ne_zero_of_Z_eq_zero πŸ“–β€”Nonsingular
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
pow_eq_zero_iff
isReduced_of_noZeroDivisors
two_ne_zero
nonsingular_of_Z_eq_zero
equation_of_Z_eq_zero
zero_pow
OfNat.ofNat_ne_zero
Nat.instCharZero
MulZeroClass.zero_mul
Y_eq_iff πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
β€”div_eq_div_iff
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Y_eq_of_equiv πŸ“–mathematicalinstSetoidForallFinOfNatNatDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Y_ne_zero_of_Z_eq_zero πŸ“–β€”Nonsingular
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”X_ne_zero_of_Z_eq_zero
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
Nat.instAtLeastTwoHAddOfNat
zero_pow
two_ne_zero
equation_of_Z_eq_zero
nonsingular_of_Z_eq_zero
Z_eq_zero_of_equiv πŸ“–mathematicalinstSetoidForallFinOfNatNatMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”
baseChange_equation πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Equation
WeierstrassCurve.toJacobian
WeierstrassCurve.baseChange
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.coe_coe
map_equation
AlgHom.toRingHom_eq_coe
WeierstrassCurve.map_baseChange
baseChange_nonsingular πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Nonsingular
WeierstrassCurve.toJacobian
WeierstrassCurve.baseChange
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.coe_coe
map_nonsingular
AlgHom.toRingHom_eq_coe
WeierstrassCurve.map_baseChange
baseChange_polynomial πŸ“–mathematicalβ€”polynomial
WeierstrassCurve.toJacobian
WeierstrassCurve.baseChange
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.map
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_polynomial
WeierstrassCurve.map_baseChange
baseChange_polynomialX πŸ“–mathematicalβ€”polynomialX
WeierstrassCurve.toJacobian
WeierstrassCurve.baseChange
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.map
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_polynomialX
WeierstrassCurve.map_baseChange
baseChange_polynomialY πŸ“–mathematicalβ€”polynomialY
WeierstrassCurve.toJacobian
WeierstrassCurve.baseChange
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.map
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_polynomialY
WeierstrassCurve.map_baseChange
baseChange_polynomialZ πŸ“–mathematicalβ€”polynomialZ
WeierstrassCurve.toJacobian
WeierstrassCurve.baseChange
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.map
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_polynomialZ
WeierstrassCurve.map_baseChange
comp_equiv_comp πŸ“–mathematicalNonsingular
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instSetoidForallFinOfNatNat
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
β€”equiv_of_Z_eq_zero
map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Z_eq_zero_of_equiv
equiv_of_X_eq_of_Y_eq
map_ne_zero_iff
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
X_eq_of_equiv
Y_eq_of_equiv
comp_smul
comp_fin3 πŸ“–mathematicalβ€”Matrix.vecCons
Matrix.vecEmpty
β€”FinVec.map_eq
comp_smul πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
instSMulForallFinOfNatNat
β€”Fintype.complete
comp_fin3
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
equation_iff πŸ“–mathematicalβ€”Equation
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Distrib.toMul
WeierstrassCurve.a₁
WeierstrassCurve.a₃
WeierstrassCurve.aβ‚‚
WeierstrassCurve.aβ‚„
WeierstrassCurve.a₆
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Equation.eq_1
eval_polynomial
equation_of_Z_eq_zero πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Equation
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”MulZeroClass.mul_zero
add_zero
zero_pow
OfNat.ofNat_ne_zero
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
equation_of_Z_ne_zero πŸ“–mathematicalβ€”Equation
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WeierstrassCurve.Affine.Equation
toAffine
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”equation_of_equiv
equiv_some_of_Z_ne_zero
equation_some
equation_of_equiv πŸ“–mathematicalinstSetoidForallFinOfNatNatEquationβ€”equation_smul
Units.isUnit
equation_smul πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Equation
instSMulForallFinOfNatNat
β€”equation_iff
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
smul_smul
IsUnit.val_inv_mul
one_smul
equation_some πŸ“–mathematicalβ€”Equation
Matrix.vecCons
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.vecEmpty
WeierstrassCurve.Affine.Equation
toAffine
β€”mul_one
one_pow
equation_zero πŸ“–mathematicalβ€”Equation
Matrix.vecCons
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Matrix.vecEmpty
β€”one_pow
equiv_iff_eq_of_Z_eq πŸ“–mathematicalβ€”instSetoidForallFinOfNatNatβ€”equiv_iff_eq_of_Z_eq'
mem_nonZeroDivisors_of_ne_zero
equiv_iff_eq_of_Z_eq' πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
instSetoidForallFinOfNatNatβ€”mul_cancel_right_mem_nonZeroDivisors
one_mul
one_smul
equiv_of_X_eq_of_Y_eq πŸ“–mathematicalDistrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instSetoidForallFinOfNatNatβ€”Units.val_div_eq_div_val
div_pow
mul_comm
mul_div
mul_div_cancel_rightβ‚€
EuclideanDomain.toMulDivCancelClass
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
fin3_def
equiv_of_Z_eq_zero πŸ“–mathematicalNonsingular
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instSetoidForallFinOfNatNatβ€”isUnit_X_of_Z_eq_zero
isUnit_Y_of_Z_eq_zero
Units.val_div_eq_div_val
mul_pow
div_pow
MulZeroClass.mul_zero
fin3_def
Nat.instAtLeastTwoHAddOfNat
pow_succ
IsUnit.mul_div_cancel_left
IsUnit.pow
IsUnit.div_mul_cancel_left
IsUnit.inv_mul_cancel_right
equiv_some_of_Z_ne_zero πŸ“–mathematicalβ€”instSetoidForallFinOfNatNat
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Matrix.vecCons
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Matrix.vecEmpty
β€”equiv_of_X_eq_of_Y_eq
one_ne_zero
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
div_self
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Mathlib.Tactic.LinearCombination.eq_rearrange
Matrix.tail_cons
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_inv_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
equiv_zero_of_Z_eq_zero πŸ“–mathematicalNonsingular
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instSetoidForallFinOfNatNat
Matrix.vecCons
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Matrix.vecEmpty
β€”equiv_of_Z_eq_zero
nonsingular_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
eval_polynomial πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
polynomial
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Distrib.toMul
WeierstrassCurve.a₁
WeierstrassCurve.a₃
WeierstrassCurve.aβ‚‚
WeierstrassCurve.aβ‚„
WeierstrassCurve.a₆
β€”polynomial.eq_1
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_add
AddMonoidHomClass.toAddHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
MvPolynomial.eval_X
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MvPolynomial.eval_C
eval_polynomialX πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
polynomialX
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WeierstrassCurve.a₁
Distrib.toAdd
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
WeierstrassCurve.aβ‚‚
WeierstrassCurve.aβ‚„
β€”Nat.instAtLeastTwoHAddOfNat
polynomialX_eq
MvPolynomial.C_mul
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MvPolynomial.eval_C
MvPolynomial.eval_X
map_add
AddMonoidHomClass.toAddHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
eval_polynomialX_of_Z_ne_zero πŸ“–mathematicalβ€”DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
RingHom
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
polynomialX
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.evalEval
CommRing.toCommSemiring
WeierstrassCurve.Affine.polynomialX
toAffine
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
Mathlib.Tactic.LinearCombination.mul_const_eq
div_self
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Mathlib.Tactic.LinearCombination.eq_rearrange
eval_polynomialX
WeierstrassCurve.Affine.evalEval_polynomialX
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_inv_one
Nat.cast_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
eval_polynomialY πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
polynomialY
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
WeierstrassCurve.a₁
WeierstrassCurve.a₃
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Nat.instAtLeastTwoHAddOfNat
polynomialY_eq
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MvPolynomial.eval_C
MvPolynomial.eval_X
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
eval_polynomialY_of_Z_ne_zero πŸ“–mathematicalβ€”DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
RingHom
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
polynomialY
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.evalEval
CommRing.toCommSemiring
WeierstrassCurve.Affine.polynomialY
toAffine
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
Mathlib.Tactic.LinearCombination.mul_const_eq
div_self
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Mathlib.Tactic.LinearCombination.eq_rearrange
Nat.instAtLeastTwoHAddOfNat
eval_polynomialY
WeierstrassCurve.Affine.evalEval_polynomialY
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_inv_one
Mathlib.Meta.NormNum.IsNat.of_raw
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
eval_polynomialZ πŸ“–mathematicalβ€”DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
polynomialZ
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
WeierstrassCurve.a₁
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
WeierstrassCurve.a₃
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
WeierstrassCurve.aβ‚‚
WeierstrassCurve.aβ‚„
WeierstrassCurve.a₆
β€”Nat.instAtLeastTwoHAddOfNat
polynomialZ_eq
MvPolynomial.C_mul
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_add
AddMonoidHomClass.toAddHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MvPolynomial.eval_C
MvPolynomial.eval_X
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
eval_polynomial_of_Z_ne_zero πŸ“–mathematicalβ€”DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
RingHom
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
polynomial
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.evalEval
CommRing.toCommSemiring
WeierstrassCurve.Affine.polynomial
toAffine
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
Mathlib.Tactic.LinearCombination.mul_const_eq
div_self
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Mathlib.Tactic.LinearCombination.eq_rearrange
eval_polynomial
WeierstrassCurve.Affine.evalEval_polynomial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_inv_one
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
fin3_def πŸ“–mathematicalβ€”Matrix.vecCons
Matrix.vecEmpty
β€”Fintype.complete
fin3_def_ext πŸ“–mathematicalβ€”Matrix.vecCons
Matrix.vecEmpty
β€”β€”
isUnit_X_of_Z_eq_zero πŸ“–mathematicalNonsingular
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Ne.isUnit
X_ne_zero_of_Z_eq_zero
IsDomain.to_noZeroDivisors
instIsDomain
isUnit_Y_of_Z_eq_zero πŸ“–mathematicalNonsingular
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Ne.isUnit
Y_ne_zero_of_Z_eq_zero
IsDomain.to_noZeroDivisors
instIsDomain
map_equation πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Equation
WeierstrassCurve.toJacobian
WeierstrassCurve.map
β€”map_polynomial
MvPolynomial.eval_map
map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_nonsingular πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
Nonsingular
WeierstrassCurve.toJacobian
WeierstrassCurve.map
β€”map_equation
map_polynomialX
MvPolynomial.eval_map
map_ne_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_polynomialY
map_polynomialZ
map_polynomial πŸ“–mathematicalβ€”polynomial
WeierstrassCurve.toJacobian
WeierstrassCurve.map
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.map
β€”map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_add
AddMonoidHomClass.toAddHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
MvPolynomial.map_X
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MvPolynomial.map_C
map_polynomialX πŸ“–mathematicalβ€”polynomialX
WeierstrassCurve.toJacobian
WeierstrassCurve.map
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.map
β€”map_polynomial
MvPolynomial.pderiv_map
map_polynomialY πŸ“–mathematicalβ€”polynomialY
WeierstrassCurve.toJacobian
WeierstrassCurve.map
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.map
β€”map_polynomial
MvPolynomial.pderiv_map
map_polynomialZ πŸ“–mathematicalβ€”polynomialZ
WeierstrassCurve.toJacobian
WeierstrassCurve.map
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.map
β€”map_polynomial
MvPolynomial.pderiv_map
nonsingularLift_iff πŸ“–mathematicalβ€”NonsingularLift
MulAction.orbitRel
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instGroup
Units.instMulAction
instMulActionForallFinOfNatNat
Nonsingular
β€”β€”
nonsingularLift_some πŸ“–mathematicalβ€”NonsingularLift
MulAction.orbitRel
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instGroup
Units.instMulAction
instMulActionForallFinOfNatNat
Matrix.vecCons
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.vecEmpty
WeierstrassCurve.Affine.Nonsingular
toAffine
β€”nonsingular_some
nonsingularLift_zero πŸ“–mathematicalβ€”NonsingularLift
MulAction.orbitRel
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instGroup
Units.instMulAction
instMulActionForallFinOfNatNat
Matrix.vecCons
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Matrix.vecEmpty
β€”nonsingular_zero
nonsingular_iff πŸ“–mathematicalβ€”Nonsingular
Equation
β€”Nat.instAtLeastTwoHAddOfNat
Nonsingular.eq_1
eval_polynomialX
eval_polynomialY
eval_polynomialZ
nonsingular_iff_of_Z_ne_zero πŸ“–mathematicalβ€”Nonsingular
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Equation
β€”nonsingular_of_Z_ne_zero
WeierstrassCurve.Affine.Nonsingular.eq_1
equation_of_Z_ne_zero
eval_polynomialX_of_Z_ne_zero
div_ne_zero_iff
pow_ne_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
eval_polynomialY_of_Z_ne_zero
nonsingular_of_Z_eq_zero πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Nonsingular
Equation
β€”Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
zero_pow
OfNat.ofNat_ne_zero
Nat.instCharZero
add_zero
zero_sub
sub_zero
nonsingular_of_Z_ne_zero πŸ“–mathematicalβ€”Nonsingular
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WeierstrassCurve.Affine.Nonsingular
toAffine
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”nonsingular_of_equiv
equiv_some_of_Z_ne_zero
nonsingular_some
nonsingular_of_equiv πŸ“–mathematicalinstSetoidForallFinOfNatNatNonsingularβ€”nonsingular_smul
Units.isUnit
nonsingular_smul πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Nonsingular
instSMulForallFinOfNatNat
β€”Nat.instAtLeastTwoHAddOfNat
nonsingular_iff
equation_smul
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Units.isUnit
smul_smul
IsUnit.val_inv_mul
one_smul
nonsingular_some πŸ“–mathematicalβ€”Nonsingular
Matrix.vecCons
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Matrix.vecEmpty
WeierstrassCurve.Affine.Nonsingular
toAffine
β€”Nat.instAtLeastTwoHAddOfNat
one_pow
mul_one
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
nonsingular_zero πŸ“–mathematicalβ€”Nonsingular
Matrix.vecCons
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Matrix.vecEmpty
β€”Nat.instAtLeastTwoHAddOfNat
one_ne_zero
NeZero.one
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
not_equiv_of_X_ne πŸ“–mathematicalβ€”instSetoidForallFinOfNatNatβ€”X_eq_of_equiv
not_equiv_of_Y_ne πŸ“–mathematicalβ€”instSetoidForallFinOfNatNatβ€”Y_eq_of_equiv
not_equiv_of_Z_eq_zero_left πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instSetoidForallFinOfNatNatβ€”Z_eq_zero_of_equiv
not_equiv_of_Z_eq_zero_right πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instSetoidForallFinOfNatNatβ€”Z_eq_zero_of_equiv
polynomialX_eq πŸ“–mathematicalβ€”polynomialX
MvPolynomial
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
WeierstrassCurve.a₁
MvPolynomial.X
Distrib.toAdd
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
WeierstrassCurve.aβ‚‚
WeierstrassCurve.aβ‚„
β€”Nat.instAtLeastTwoHAddOfNat
polynomialX.eq_1
polynomial.eq_1
map_sub
Derivation.instAddMonoidHomClass
map_add
AddMonoidHomClass.toAddHomClass
MvPolynomial.pderiv_pow
MvPolynomial.pderiv_X_of_ne
one_ne_zero
Fin.instNeZeroHAddNatOfNat_mathlib_1
MvPolynomial.pderiv_mul
MvPolynomial.pderiv_C
MvPolynomial.pderiv_X_self
map_ofNat
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Meta.NormNum.isNat_natSub
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.instAtLeastTwo
polynomialY_eq πŸ“–mathematicalβ€”polynomialY
MvPolynomial
CommRing.toCommSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Distrib.toMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
MvPolynomial.X
WeierstrassCurve.a₁
WeierstrassCurve.a₃
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”Nat.instAtLeastTwoHAddOfNat
polynomialY.eq_1
polynomial.eq_1
map_sub
Derivation.instAddMonoidHomClass
map_add
AddMonoidHomClass.toAddHomClass
MvPolynomial.pderiv_pow
MvPolynomial.pderiv_X_self
MvPolynomial.pderiv_mul
MvPolynomial.pderiv_C
MvPolynomial.pderiv_X_of_ne
one_ne_zero
Fin.instNeZeroHAddNatOfNat_mathlib_1
map_ofNat
RingHom.instRingHomClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Meta.NormNum.isNat_natSub
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.instAtLeastTwo
polynomialZ_eq πŸ“–mathematicalβ€”polynomialZ
MvPolynomial
CommRing.toCommSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
WeierstrassCurve.a₁
MvPolynomial.X
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
WeierstrassCurve.a₃
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
WeierstrassCurve.aβ‚‚
WeierstrassCurve.aβ‚„
WeierstrassCurve.a₆
β€”Nat.instAtLeastTwoHAddOfNat
polynomialZ.eq_1
polynomial.eq_1
map_sub
Derivation.instAddMonoidHomClass
map_add
AddMonoidHomClass.toAddHomClass
MvPolynomial.pderiv_pow
MvPolynomial.pderiv_X_of_ne
MvPolynomial.pderiv_mul
MvPolynomial.pderiv_C
MvPolynomial.pderiv_X_self
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_ofNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Meta.NormNum.isNat_natSub
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.instAtLeastTwo
polynomial_relation πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
RingHom
MvPolynomial
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.eval
polynomial
Distrib.toAdd
polynomialX
polynomialY
polynomialZ
β€”Nat.instAtLeastTwoHAddOfNat
eval_polynomial
eval_polynomialX
eval_polynomialY
eval_polynomialZ
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
smul_eq πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
MulAction.orbitRel
Units
Units.instGroup
Units.instMulAction
instMulActionForallFinOfNatNat
instSMulForallFinOfNatNat
β€”Quotient.eq
smul_equiv
smul_equiv πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instSetoidForallFinOfNatNat
instSMulForallFinOfNatNat
β€”β€”
smul_equiv_smul πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instSetoidForallFinOfNatNat
instSMulForallFinOfNatNat
β€”Quotient.eq_iff_equiv
smul_eq
smul_fin3 πŸ“–mathematicalβ€”instSMulForallFinOfNatNat
Matrix.vecCons
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Matrix.vecEmpty
β€”β€”
smul_fin3_ext πŸ“–mathematicalβ€”instSMulForallFinOfNatNat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”

WeierstrassCurve.Jacobian.Equation

Theorems

NameKindAssumesProvesValidatesDepends On
baseChange πŸ“–mathematicalWeierstrassCurve.Jacobian.Equation
WeierstrassCurve.toJacobian
WeierstrassCurve.baseChange
DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.toRingHom_eq_coe
WeierstrassCurve.map_baseChange
map
map πŸ“–mathematicalWeierstrassCurve.Jacobian.EquationWeierstrassCurve.toJacobian
WeierstrassCurve.map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”eq_1
WeierstrassCurve.Jacobian.map_polynomial
MvPolynomial.eval_map
MvPolynomial.evalβ‚‚_comp
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass

---

← Back to Index