| Name | Category | Theorems |
addU π | CompOp | 10 mathmath: addXYZ_of_X_eq, negAddY_of_X_eq, addU_of_Z_eq_zero_right, addX_of_X_eq, addU_of_Z_eq_zero_left, addY_of_X_eq, addU_smul, map_addU, add_of_Y_ne, isUnit_addU_of_Y_ne
|
addX π | CompOp | 15 mathmath: map_addX, addXYZ_X, negAddY_eq, baseChange_addX, addX_of_Z_ne_zero, addX_eq', addX_of_X_eq, addX_eq, addX_smul, addX_self, negAddY_eq', addX_of_X_eq', addX_neg, addX_of_Z_eq_zero_right, addX_of_Z_eq_zero_left
|
addXYZ π | CompOp | 13 mathmath: addXYZ_of_Z_ne_zero, addXYZ_self, addXYZ_X, addXYZ_Z, addXYZ_of_X_eq, baseChange_addXYZ, addXYZ_smul, addXYZ_of_Z_eq_zero_right, addXYZ_neg, add_of_not_equiv, addXYZ_Y, addXYZ_of_Z_eq_zero_left, map_addXYZ
|
addY π | CompOp | 11 mathmath: addY_neg, addY_smul, addY_of_Z_ne_zero, map_addY, addY_of_Z_eq_zero_right, addY_of_X_eq', addY_of_X_eq, addY_of_Z_eq_zero_left, addXYZ_Y, baseChange_addY, addY_self
|
addZ π | CompOp | 18 mathmath: addXYZ_of_Z_ne_zero, addXYZ_Z, negAddY_eq, addZ_of_Z_eq_zero_right, addZ_smul, addZ_neg, addX_of_Z_ne_zero, addX_eq', map_addZ, addY_of_Z_ne_zero, addZ_of_Z_eq_zero_left, addZ_of_X_eq, add_of_X_ne, addX_eq, negAddY_of_Z_ne_zero, addZ_self, negAddY_eq', isUnit_addZ_of_X_ne
|
dblU π | CompOp | 12 mathmath: dblX_of_Y_eq, add_of_Y_eq, baseChange_dblU, dblU_eq, dblXYZ_of_Y_eq', negDblY_of_Y_eq, dblY_of_Y_eq, dblU_smul, map_dblU, dblU_of_Z_eq_zero, dblXYZ_of_Y_eq, isUnit_dblU_of_Y_eq
|
dblX π | CompOp | 7 mathmath: dblX_of_Y_eq, dblX_of_Z_ne_zero, map_dblX, dblXYZ_X, baseChange_dblX, dblX_smul, dblX_of_Z_eq_zero
|
dblXYZ π | CompOp | 13 mathmath: dblXYZ_Z, dblXYZ_X, dblXYZ_of_Z_ne_zero, map_dblXYZ, add_of_eq, add_self, dblXYZ_of_Y_eq', add_of_equiv, baseChange_dblXYZ, dblXYZ_Y, dblXYZ_of_Z_eq_zero, dblXYZ_smul, dblXYZ_of_Y_eq
|
dblY π | CompOp | 7 mathmath: dblY_of_Z_eq_zero, baseChange_dblY, dblY_of_Z_ne_zero, dblY_smul, dblY_of_Y_eq, dblXYZ_Y, map_dblY
|
dblZ π | CompOp | 17 mathmath: dblXYZ_Z, add_of_Y_ne', dblX_of_Z_ne_zero, addY_neg, negAddY_neg, map_dblZ, dblZ_smul, dblXYZ_of_Z_ne_zero, dblY_of_Z_ne_zero, addXYZ_neg, dblZ_of_Z_eq_zero, isUnit_dblZ_of_Y_ne', baseChange_dblZ, dblZ_of_Y_eq, negDblY_of_Z_ne_zero, isUnit_dblZ_of_Y_ne, addX_neg
|
negAddY π | CompOp | 12 mathmath: negAddY_of_Z_eq_zero_left, negAddY_eq, negAddY_of_Z_eq_zero_right, negAddY_of_X_eq, negAddY_neg, negAddY_of_X_eq', negAddY_smul, negAddY_of_Z_ne_zero, map_negAddY, negAddY_self, negAddY_eq', baseChange_negAddY
|
negDblY π | CompOp | 6 mathmath: map_negDblY, baseChange_negDblY, negDblY_of_Z_eq_zero, negDblY_smul, negDblY_of_Y_eq, negDblY_of_Z_ne_zero
|
negY π | CompOp | 13 mathmath: negAddY_of_Z_eq_zero_left, negY_eq, negY_of_Z_ne_zero, negAddY_of_Z_eq_zero_right, map_negY, Y_eq_of_Y_ne, Y_sub_Y_add_Y_sub_negY, Y_eq_iff', Y_sub_Y_mul_Y_sub_negY, neg_Y, negY_smul, baseChange_negY, negY_of_Z_eq_zero
|