Documentation Verification Report

Reduction

πŸ“ Source: Mathlib/AlgebraicGeometry/EllipticCurve/Reduction.lean

Statistics

MetricCount
DefinitionsIsGoodReduction, IsMinimal, integralModel, minimal, reduction, valuation_Ξ”_aux
6
TheoremsgoodReduction, integral, val_Ξ”_maximal, baseChange_integralModel_eq, exists_isIntegral, exists_isMinimal, instIsIntegralOfIsMinimal, instIsMinimalMinimal, integralModel_Ξ”_eq, isGoodReduction_iff, isGoodReduction_iff_isElliptic_reduction, isIntegral_iff, isIntegral_of_exists_lift, isMinimal_iff, valuation_Ξ”_aux_eq_of_isIntegral, Ξ”_integral_of_isIntegral
16
Total22

WeierstrassCurve

Definitions

NameCategoryTheorems
IsGoodReduction πŸ“–CompData
2 mathmath: isGoodReduction_iff, isGoodReduction_iff_isElliptic_reduction
IsMinimal πŸ“–CompData
3 mathmath: exists_isMinimal, instIsMinimalMinimal, isMinimal_iff
integralModel πŸ“–CompOp
2 mathmath: integralModel_Ξ”_eq, baseChange_integralModel_eq
minimal πŸ“–CompOp
1 mathmath: instIsMinimalMinimal
reduction πŸ“–CompOp
1 mathmath: isGoodReduction_iff_isElliptic_reduction
valuation_Ξ”_aux πŸ“–CompOp
3 mathmath: valuation_Ξ”_aux_eq_of_isIntegral, IsMinimal.val_Ξ”_maximal, isMinimal_iff

Theorems

NameKindAssumesProvesValidatesDepends On
baseChange_integralModel_eq πŸ“–mathematicalβ€”baseChange
integralModel
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”IsIntegral.integral
exists_isIntegral πŸ“–mathematicalβ€”IsIntegral
VariableChange
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WeierstrassCurve
instSMulVariableChange
β€”zero_add
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Nat.instAtLeastTwoHAddOfNat
List.maximum_of_length_pos_mem
List.le_maximum_of_length_pos_of_mem
isIntegral_of_exists_lift
inv_one
MulZeroClass.mul_zero
add_zero
one_mul
one_pow
MulZeroClass.zero_mul
sub_zero
zero_pow
Nat.instCharZero
LE.le.trans
le_of_not_ge
instLawfulBCmpCompare_mathlib
map_zero
MonoidWithZeroHomClass.toZeroHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
zero_le_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
ValuationRing.mem_integer_iff
Units.val_inv_eq_inv_val
inv_pow
Valuation.mem_integer_iff
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
map_invβ‚€
inv_mul_le_one_of_leβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
le_refl
zero_le'
map_pow
le_self_pow
IsOrderedMonoid.toMulLeftMono
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
GE.ge.le
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.mul_neg
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
Int.instCharZero
sub_eq_zero_of_eq
Nat.cast_zero
exists_isMinimal πŸ“–mathematicalβ€”IsMinimal
VariableChange
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WeierstrassCurve
instSMulVariableChange
β€”exists_maximalFor_of_wellFoundedGT
instWellFoundedGTWithZeroMultiplicativeIntLeOne
exists_isIntegral
of_isDiscreteValuationRing
one_smul
smul_assoc
IsScalarTower.left
valuation_Ξ”_aux.congr_simp
instIsIntegralOfIsMinimal πŸ“–mathematicalβ€”IsIntegralβ€”one_smul
IsMinimal.val_Ξ”_maximal
instIsMinimalMinimal πŸ“–mathematicalβ€”IsMinimal
minimal
β€”exists_isMinimal
integralModel_Ξ”_eq πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
Ξ”
integralModel
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”baseChange_integralModel_eq
IsIntegral.integral
map_Ξ”
isGoodReduction_iff πŸ“–mathematicalβ€”IsGoodReduction
DFunLike.coe
Valuation
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.valuation
IsPrincipalIdealRing.isDedekindDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
IsDiscreteValuationRing.maximalIdeal
Ξ”
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsPrincipalIdealRing.isDedekindDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
isGoodReduction_iff_isElliptic_reduction πŸ“–mathematicalβ€”IsGoodReduction
IsElliptic
IsLocalRing.ResidueField
IsDiscreteValuationRing.toIsLocalRing
IsLocalRing.instCommRingResidueField
reduction
β€”IsDiscreteValuationRing.toIsLocalRing
instIsIntegralOfIsMinimal
map_Ξ”
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsPrincipalIdealRing.isDedekindDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
not_iff_not
IsDedekindDomain.HeightOneSpectrum.valuation_lt_one_iff_mem
isGoodReduction_iff
integralModel_Ξ”_eq
LE.le.ge_iff_eq
IsDedekindDomain.HeightOneSpectrum.valuation_le_one
isElliptic_iff
isIntegral_iff πŸ“–mathematicalβ€”IsIntegral
baseChange
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”
isIntegral_of_exists_lift πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
a₁
aβ‚‚
a₃
aβ‚„
a₆
IsIntegralβ€”ext
isMinimal_iff πŸ“–mathematicalβ€”IsMinimal
MaximalFor
VariableChange
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
IsIntegral
WeierstrassCurve
instSMulVariableChange
valuation_Ξ”_aux
VariableChange.instOne
β€”β€”
valuation_Ξ”_aux_eq_of_isIntegral πŸ“–mathematicalβ€”WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
valuation_Ξ”_aux
DFunLike.coe
Valuation
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.valuation
IsPrincipalIdealRing.isDedekindDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
IsDiscreteValuationRing.maximalIdeal
Ξ”
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
IsPrincipalIdealRing.isDedekindDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
Ξ”_integral_of_isIntegral πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
Ξ”
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”IsIntegral.integral
map_Ξ”

WeierstrassCurve.IsGoodReduction

Theorems

NameKindAssumesProvesValidatesDepends On
goodReduction πŸ“–mathematicalβ€”DFunLike.coe
Valuation
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.valuation
IsPrincipalIdealRing.isDedekindDomain
IsDiscreteValuationRing.toIsPrincipalIdealRing
IsDiscreteValuationRing.maximalIdeal
WeierstrassCurve.Ξ”
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
β€”β€”

WeierstrassCurve.IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
integral πŸ“–mathematicalβ€”WeierstrassCurve.baseChange
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”

WeierstrassCurve.IsMinimal

Theorems

NameKindAssumesProvesValidatesDepends On
val_Ξ”_maximal πŸ“–mathematicalβ€”MaximalFor
WeierstrassCurve.VariableChange
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
WeierstrassCurve.IsIntegral
WeierstrassCurve
WeierstrassCurve.instSMulVariableChange
WeierstrassCurve.valuation_Ξ”_aux
WeierstrassCurve.VariableChange.instOne
β€”β€”

---

← Back to Index