| Name | Category | Theorems |
IsElliptic π | CompData | 8 mathmath: instIsEllipticOfJ0OfFactIsUnitOfNat, instIsEllipticHSMulVariableChange, instIsEllipticOfJNe0Or1728OfFactIsUnitHSubOfNat, instIsEllipticOfJ1728OfFactIsUnitOfNat, instIsEllipticMap, isElliptic_iff, isGoodReduction_iff_isElliptic_reduction, instIsEllipticOfJ
|
aβ π | CompOp | 77 mathmath: bβ_of_char_three, j_of_char_two, Projective.eval_polynomial, Projective.negY_eq, bβ_of_char_two, variableChange_aβ, isCharTwoJNeZeroNF_iff, Jacobian.eval_polynomialY, Jacobian.negY_eq, Projective.dblU_eq, bβ_of_char_two, Affine.equation_iff', Affine.polynomial_eq, aβ_of_isShortNF, Jacobian.polynomialY_eq, Jacobian.eval_polynomialX, aβ_of_isCharTwoJNeZeroNF, Projective.eval_polynomialX, toCharNeTwoNF_s, Projective.negAddY_eq', Affine.slope_of_Y_ne, bβ_of_char_three, Projective.polynomialZ_eq, aβ_of_isCharNeTwoNF, Jacobian.addX_eq', isCharThreeJNeZeroNF_iff, Affine.CoordinateRing.norm_smul_basis, isCharNeTwoNF_iff, variableChange_def, Affine.addPolynomial_eq, variableChange_aβ, variableChange_aβ, Projective.eval_polynomialZ, Projective.polynomialX_eq, Projective.polynomialY_eq, Projective.negDblY_eq, Projective.addX_eq, variableChange_aβ, aβ_of_isCharTwoJEqZeroNF, ext_iff, Jacobian.polynomialZ_eq, Jacobian.dblU_eq, isCharTwoJEqZeroNF_iff, bβ_of_char_two, Jacobian.equation_iff, Projective.negDblY_eq', Affine.equation_iff, isShortNF_iff, Projective.negAddY_eq, Jacobian.addX_eq, bβ_of_char_three, Affine.evalEval_polynomialY, Jacobian.eval_polynomial, IsCharThreeJNeZeroNF.aβ, Projective.addX_eq', Affine.CoordinateRing.coe_norm_smul_basis, j_eq_zero_iff_of_char_two', Jacobian.polynomialX_eq, cβ_of_char_two, Affine.evalEval_polynomial, Affine.evalEval_polynomialX, IsCharTwoJEqZeroNF.aβ, Projective.dblX_eq, map_aβ, j_eq_zero_iff_of_char_two, aβ_of_isCharThreeJNeZeroNF, Projective.equation_iff, IsCharTwoJNeZeroNF.aβ, Projective.dblX_eq', IsCharNeTwoNF.aβ, variableChange_aβ, Projective.eval_polynomialY, Jacobian.eval_polynomialZ, IsShortNF.aβ, Affine.CoordinateRing.smul_basis_mul_Y, Ξ_of_char_two, cβ_of_char_two
|
aβ π | CompOp | 68 mathmath: bβ_of_char_three, map_aβ, cβ_of_isCharThreeJNeZeroNF_of_char_three, Projective.eval_polynomial, bβ_of_char_two, bβ_of_isCharThreeJNeZeroNF, bβ_of_isCharNeTwoNF, Projective.dblU_eq, Affine.equation_iff', Affine.polynomial_eq, bβ_of_isCharTwoJNeZeroNF, bβ_of_isCharNeTwoNF, Jacobian.eval_polynomialX, cβ_of_isCharThreeJNeZeroNF, Projective.eval_polynomialX, Projective.negAddY_eq', Affine.slope_of_Y_ne, cβ_of_isCharThreeJNeZeroNF, Affine.slope_of_Y_ne', IsShortNF.aβ, Projective.polynomialZ_eq, Jacobian.addX_eq', Affine.CoordinateRing.norm_smul_basis, variableChange_def, Affine.addPolynomial_eq, variableChange_aβ, Projective.eval_polynomialZ, Projective.polynomialX_eq, bβ_of_isCharThreeJNeZeroNF, Projective.negDblY_eq, Projective.addX_eq, variableChange_aβ, cβ_of_isCharNeTwoNF, ext_iff, Jacobian.polynomialZ_eq, Jacobian.dblU_eq, isCharTwoJEqZeroNF_iff, Ξ_of_isCharNeTwoNF, Jacobian.equation_iff, Projective.negDblY_eq', Affine.equation_iff, isShortNF_iff, Projective.negAddY_eq, toShortNFOfCharThree_aβ, Jacobian.addX_eq, bβ_of_char_three, Jacobian.eval_polynomial, Projective.addX_eq', cβ_of_isCharNeTwoNF, Jacobian.polynomialX_eq, Affine.evalEval_polynomial, bβ_of_isCharThreeJNeZeroNF_of_char_three, Affine.evalEval_polynomialX, Ξ_of_isCharThreeJNeZeroNF, Projective.dblX_eq, Projective.equation_iff, aβ_of_isShortNF, Projective.dblX_eq', cβ_of_isCharThreeJNeZeroNF_of_char_three, Ξ_of_isCharThreeJNeZeroNF_of_char_three, aβ_of_isCharTwoJEqZeroNF, variableChange_aβ, Jacobian.eval_polynomialZ, bβ_of_isCharThreeJNeZeroNF_of_char_three, j_of_isCharThreeJNeZeroNF_of_char_three, Affine.CoordinateRing.smul_basis_mul_Y, IsCharTwoJEqZeroNF.aβ, bβ_of_isCharTwoJNeZeroNF
|
aβ π | CompOp | 51 mathmath: Projective.eval_polynomial, toCharNeTwoNF_t, Projective.negY_eq, bβ_of_char_two, isCharTwoJNeZeroNF_iff, Jacobian.eval_polynomialY, IsCharTwoJNeZeroNF.aβ, Jacobian.negY_eq, aβ_of_isCharThreeJNeZeroNF, Affine.equation_iff', Affine.polynomial_eq, bβ_of_char_three, Jacobian.polynomialY_eq, bβ_of_char_three, Projective.polynomialZ_eq, isCharThreeJNeZeroNF_iff, Affine.CoordinateRing.norm_smul_basis, isCharNeTwoNF_iff, variableChange_def, Affine.addPolynomial_eq, variableChange_aβ, Projective.eval_polynomialZ, IsShortNF.aβ, aβ_of_isCharNeTwoNF, Projective.polynomialY_eq, variableChange_aβ, ext_iff, Jacobian.polynomialZ_eq, bβ_of_char_two, Affine.evalEval_polynomialY_zero, Jacobian.equation_iff, Affine.equation_iff, isShortNF_iff, Ξ_of_isCharTwoJEqZeroNF_of_char_two, bβ_of_char_three, Affine.evalEval_polynomialY, Jacobian.eval_polynomial, Affine.CoordinateRing.coe_norm_smul_basis, Affine.evalEval_polynomial, IsCharNeTwoNF.aβ, aβ_of_isShortNF, map_aβ, IsCharThreeJNeZeroNF.aβ, bβ_of_char_two, Projective.equation_iff, variableChange_aβ, Projective.eval_polynomialY, Jacobian.eval_polynomialZ, Affine.CoordinateRing.smul_basis_mul_Y, Ξ_of_char_two, aβ_of_isCharTwoJNeZeroNF
|
aβ π | CompOp | 57 mathmath: Projective.eval_polynomial, bβ_of_char_two, Ξ_of_isCharTwoJEqZeroNF, isCharTwoJNeZeroNF_iff, bβ_of_isCharNeTwoNF, Projective.dblU_eq, Affine.equation_iff', Affine.polynomial_eq, bβ_of_isCharTwoJEqZeroNF_of_char_two, bβ_of_isShortNF_of_char_three, bβ_of_isCharTwoJEqZeroNF, Jacobian.eval_polynomialX, Projective.eval_polynomialX, Affine.slope_of_Y_ne, Affine.slope_of_Y_ne', bβ_of_char_three, Projective.polynomialZ_eq, map_aβ, Ξ_of_isShortNF, isCharThreeJNeZeroNF_iff, Affine.CoordinateRing.norm_smul_basis, aβ_of_isCharThreeJNeZeroNF, Ξ_of_isShortNF_of_char_three, variableChange_def, Affine.addPolynomial_eq, Projective.eval_polynomialZ, bβ_of_isShortNF, Projective.polynomialX_eq, cβ_of_isShortNF, variableChange_aβ, cβ_of_isCharNeTwoNF, ext_iff, j_of_isCharTwoJEqZeroNF, Jacobian.polynomialZ_eq, Jacobian.dblU_eq, Ξ_of_isCharNeTwoNF, Jacobian.equation_iff, Affine.equation_iff, IsCharThreeJNeZeroNF.aβ, bβ_of_char_three, Jacobian.eval_polynomial, IsCharTwoJNeZeroNF.aβ, cβ_of_isCharNeTwoNF, Jacobian.polynomialX_eq, Affine.evalEval_polynomial, Affine.evalEval_polynomialX, cβ_of_isCharTwoJEqZeroNF, bβ_of_isCharNeTwoNF, bβ_of_isShortNF, Projective.equation_iff, j_of_isShortNF, bβ_of_isCharTwoJEqZeroNF, aβ_of_isCharTwoJNeZeroNF, variableChange_aβ, Affine.evalEval_polynomialX_zero, Jacobian.eval_polynomialZ, Affine.CoordinateRing.smul_basis_mul_Y
|
aβ π | CompOp | 48 mathmath: Projective.eval_polynomial, bβ_of_char_two, bβ_of_isCharNeTwoNF, Affine.equation_iff', Affine.polynomial_eq, Affine.nonsingular_zero, bβ_of_char_three, cβ_of_isCharThreeJNeZeroNF, bβ_of_isCharTwoJNeZeroNF_of_char_two, bβ_of_isCharTwoJNeZeroNF, Projective.polynomialZ_eq, Ξ_of_isShortNF, bβ_of_isShortNF, map_aβ, Affine.CoordinateRing.norm_smul_basis, bβ_of_isCharThreeJNeZeroNF, variableChange_def, Affine.addPolynomial_eq, Projective.eval_polynomialZ, Affine.evalEval_polynomial_zero, Affine.equation_zero, cβ_of_isCharTwoJNeZeroNF, bβ_of_isCharThreeJNeZeroNF, bβ_of_isCharThreeJNeZeroNF_of_char_three, cβ_of_isCharNeTwoNF, ext_iff, Jacobian.polynomialZ_eq, bβ_of_isShortNF_of_char_three, Ξ_of_isCharNeTwoNF, Jacobian.equation_iff, Affine.equation_iff, bβ_of_char_three, Jacobian.eval_polynomial, bβ_of_isCharNeTwoNF, Affine.evalEval_polynomial, Ξ_of_isCharTwoJNeZeroNF_of_char_two, Ξ_of_isCharThreeJNeZeroNF, Projective.equation_iff, j_of_isShortNF, Ξ_of_isCharThreeJNeZeroNF_of_char_three, cβ_of_isShortNF, variableChange_aβ, j_of_isCharTwoJNeZeroNF_of_char_two, Jacobian.eval_polynomialZ, bβ_of_isCharThreeJNeZeroNF_of_char_three, j_of_isCharThreeJNeZeroNF_of_char_three, Affine.CoordinateRing.smul_basis_mul_Y, bβ_of_isCharTwoJNeZeroNF
|
baseChange π | CompOp | 68 mathmath: baseChange_Ξ¨Sq, Affine.baseChange_nonsingular, Projective.baseChange_negDblY, baseChange_preΞ¨, Jacobian.baseChange_polynomialZ, baseChange_preΞ¨β, Projective.baseChange_negAddY, Projective.baseChange_negY, baseChange_Ξ¨βSq, baseChange_preΞ¨', Affine.baseChange_negY, baseChange_Οβ, Projective.baseChange_polynomial, Affine.baseChange_negPolynomial, Projective.baseChange_dblXYZ, Jacobian.baseChange_nonsingular, Jacobian.baseChange_addX, Jacobian.baseChange_equation, Projective.baseChange_addXYZ, Jacobian.baseChange_addXYZ, baseChange_Ο, Affine.Point.map_injective, Jacobian.baseChange_dblX, Jacobian.baseChange_negDblY, Jacobian.baseChange_polynomialY, Projective.baseChange_polynomialY, Jacobian.baseChange_dblY, baseChange_integralModel_eq, baseChange_Ξ¦, Projective.baseChange_equation, Jacobian.baseChange_dblU, Jacobian.baseChange_polynomial, Affine.Point.map_baseChange, Projective.baseChange_dblZ, Affine.baseChange_addPolynomial, baseChange_Ξ¨, Projective.baseChange_polynomialX, Affine.baseChange_polynomialX, Jacobian.baseChange_neg, Affine.Point.map_map, map_baseChange, Affine.baseChange_equation, Affine.baseChange_polynomial, Jacobian.baseChange_dblXYZ, baseChange_Ο, Projective.baseChange_addX, Jacobian.baseChange_dblZ, Jacobian.baseChange_polynomialX, Projective.baseChange_dblX, Projective.baseChange_dblU, Projective.baseChange_nonsingular, Affine.baseChange_slope, Affine.baseChange_addY, Projective.baseChange_neg, IsIntegral.integral, Projective.baseChange_polynomialZ, Affine.baseChange_polynomialY, Affine.baseChange_addX, Jacobian.baseChange_negY, Affine.Point.map_zero, Projective.baseChange_dblY, isIntegral_iff, Projective.baseChange_addY, Jacobian.baseChange_addY, Affine.baseChange_negAddY, baseChange_Ξ¨β, Jacobian.baseChange_negAddY, Affine.Point.map_id
|
bβ π | CompOp | 28 mathmath: bβ_of_char_three, cβ_of_char_three, b_relation_of_char_two, bβ_of_isCharThreeJNeZeroNF, j_of_char_three, bβ_of_char_two, bβ_of_isCharTwoJNeZeroNF, bβ_of_isCharNeTwoNF, variableChange_bβ, Ξ_of_char_three, variableChange_bβ, variableChange_bβ, cβ_of_isCharTwoJNeZeroNF, bβ_of_isShortNF, cβ_of_isCharTwoJNeZeroNF, bβ_of_isCharTwoJNeZeroNF_of_char_two, b_relation_of_char_three, b_relation, toShortNFOfCharThree_aβ, twoTorsionPolynomial_of_char_three, bβ_of_isCharThreeJNeZeroNF_of_char_three, j_eq_zero_iff_of_char_three, cβ_of_char_three, twoTorsionPolynomial_of_char_two, j_eq_zero_iff_of_char_three', map_bβ, bβ_of_isCharTwoJEqZeroNF, variableChange_bβ
|
bβ π | CompOp | 19 mathmath: b_relation_of_char_two, bβ_of_isShortNF_of_char_three, variableChange_bβ, Ξ_of_char_three, bβ_of_char_three, variableChange_bβ, bβ_of_isShortNF, bβ_of_isCharThreeJNeZeroNF, bβ_of_char_two, b_relation_of_char_three, b_relation, Ξ¦_two, twoTorsionPolynomial_of_char_three, bβ_of_isCharTwoJNeZeroNF, map_bβ, bβ_of_isCharNeTwoNF, bβ_of_isCharTwoJEqZeroNF, bβ_of_isCharTwoJEqZeroNF_of_char_two, variableChange_bβ
|
bβ π | CompOp | 21 mathmath: Ξ_of_isCharTwoJEqZeroNF, b_relation_of_char_two, bβ_of_char_three, bβ_of_isCharTwoJNeZeroNF_of_char_two, variableChange_bβ, bβ_of_isCharTwoJNeZeroNF, variableChange_bβ, bβ_of_isShortNF, map_bβ, bβ_of_isCharThreeJNeZeroNF, cβ_of_isCharTwoJEqZeroNF, bβ_of_isCharThreeJNeZeroNF_of_char_three, j_of_isCharTwoJEqZeroNF, bβ_of_isShortNF_of_char_three, b_relation_of_char_three, b_relation, Ξ¦_two, twoTorsionPolynomial_of_char_three, bβ_of_isCharNeTwoNF, twoTorsionPolynomial_of_char_two, bβ_of_char_two
|
bβ π | CompOp | 17 mathmath: bβ_of_char_two, bβ_of_isCharNeTwoNF, bβ_of_isCharTwoJEqZeroNF_of_char_two, bβ_of_isCharTwoJEqZeroNF, variableChange_bβ, bβ_of_isCharTwoJNeZeroNF_of_char_two, map_bβ, Ξ_of_char_three, bβ_of_isCharThreeJNeZeroNF, b_relation_of_char_three, b_relation, Ξ¦_two, bβ_of_char_three, bβ_of_isShortNF, bβ_of_isCharThreeJNeZeroNF_of_char_three, Ξ_of_char_two, bβ_of_isCharTwoJNeZeroNF
|
cβ π | CompOp | 21 mathmath: cβ_of_char_three, c_relation, ofJNe0Or1728_cβ, cβ_of_isCharThreeJNeZeroNF, j_eq_zero_iff', cβ_of_isCharTwoJNeZeroNF, ofJ0_cβ, cβ_of_isShortNF, cβ_of_isShortNF_of_char_three, cβ_of_isCharNeTwoNF, map_cβ, cβ_of_isCharTwoJEqZeroNF_of_char_two, cβ_of_isCharTwoJEqZeroNF, cβ_of_isCharThreeJNeZeroNF_of_char_three, variableChange_cβ, cβ_of_isCharTwoJNeZeroNF_of_char_two, j_eq_zero_iff, c_relation_of_char_three, cβ_of_char_two, ofJ1728_cβ, c_relation_of_char_two
|
cβ π | CompOp | 16 mathmath: cβ_of_isCharThreeJNeZeroNF_of_char_three, c_relation, map_cβ, cβ_of_isCharThreeJNeZeroNF, variableChange_cβ, cβ_of_isCharTwoJEqZeroNF, cβ_of_isCharTwoJNeZeroNF, cβ_of_isCharTwoJEqZeroNF_of_char_two, cβ_of_isCharNeTwoNF, cβ_of_char_two, cβ_of_char_three, cβ_of_isShortNF, cβ_of_isShortNF_of_char_three, c_relation_of_char_three, cβ_of_isCharTwoJNeZeroNF_of_char_two, c_relation_of_char_two
|
instInhabited π | CompOp | β |
j π | CompOp | 23 mathmath: j_of_char_two, variableChange_j, ofJ_j, j_of_char_three, j_eq_zero_iff', j_of_isCharTwoJEqZeroNF_of_char_two, j_eq_zero, ofJ1728_j, j_of_isCharTwoJEqZeroNF, ofJ0_j, j_eq_zero_of_char_three, j_eq_zero_iff_of_char_two', ofJNe0Or1728_j, j_eq_zero_iff_of_char_three, j_of_isShortNF_of_char_three, j_eq_zero_iff_of_char_two, j_eq_zero_iff_of_char_three', j_of_isShortNF, map_j, j_eq_zero_of_char_two, j_of_isCharTwoJNeZeroNF_of_char_two, j_eq_zero_iff, j_of_isCharThreeJNeZeroNF_of_char_three
|
map π | CompOp | 91 mathmath: Jacobian.map_addX, Projective.map_dblZ, map_Οβ, Projective.map_neg, map_aβ, map_Ξ¨βSq, map_Ο, Jacobian.map_equation, Jacobian.map_dblX, map_Ξ¨, Jacobian.map_negDblY, Projective.map_negAddY, Affine.map_polynomialY, map_cβ, Affine.map_addY, map_id, Jacobian.map_negY, Jacobian.map_dblZ, coe_map_Ξ', map_bβ, Projective.map_negDblY, map_aβ, Jacobian.map_add, Affine.map_negPolynomial, map_injective, map_aβ, map_bβ, Jacobian.map_dblXYZ, Jacobian.map_addY, Affine.map_slope, Projective.map_polynomialX, Affine.CoordinateRing.map_mk, map_Ξ¦, map_preΞ¨', Projective.map_addY, Projective.map_dblY, Jacobian.map_nonsingular, Projective.map_dblU, Affine.map_polynomial, coe_inv_map_Ξ', map_Ξ¨Sq, map_variableChange, map_baseChange, Affine.map_nonsingular, Affine.CoordinateRing.map_injective, Affine.map_negAddY, Projective.map_equation, Affine.map_equation, instIsEllipticMap, Jacobian.map_polynomialZ, Projective.map_addXYZ, Projective.map_polynomialZ, Jacobian.Equation.map, map_preΞ¨, map_Ξ¨β, Projective.map_dblXYZ, Jacobian.map_negAddY, Jacobian.map_polynomial, map_cβ, Affine.map_polynomialX, map_preΞ¨β, map_bβ, Jacobian.map_dblY, Projective.map_addX, Projective.map_addZ, map_Ξ', Jacobian.map_dblU, Projective.Equation.map, Affine.Equation.map, Projective.map_add, inv_map_Ξ', Affine.map_addPolynomial, map_aβ, map_aβ, Affine.map_negY, map_Ο, map_j, Jacobian.map_polynomialY, Affine.CoordinateRing.map_smul, map_Ξ, Affine.map_addX, Projective.map_polynomialY, Projective.map_polynomial, Projective.map_nonsingular, Projective.map_negY, map_bβ, Jacobian.map_polynomialX, Jacobian.map_neg, map_map, Jacobian.map_addXYZ, Projective.map_dblX
|
twoTorsionPolynomial π | CompOp | 11 mathmath: twoTorsionPolynomial_discr_of_char_three, twoTorsionPolynomial_disc_of_char_three, twoTorsionPolynomial_disc_of_char_two, Ξ¨βSq_eq, twoTorsionPolynomial_discr_isUnit, twoTorsionPolynomial_disc_isUnit, twoTorsionPolynomial_of_char_three, twoTorsionPolynomial_disc, twoTorsionPolynomial_discr_of_char_two, twoTorsionPolynomial_of_char_two, twoTorsionPolynomial_discr
|
Ξ π | CompOp | 31 mathmath: c_relation, twoTorsionPolynomial_discr_of_char_three, ofJNe0Or1728_Ξ, twoTorsionPolynomial_disc_of_char_three, Ξ_of_isCharTwoJEqZeroNF, valuation_Ξ_aux_eq_of_isIntegral, integralModel_Ξ_eq, IsElliptic.isUnit, ofJ0_Ξ, Ξ_of_char_three, Ξ_of_isShortNF, isGoodReduction_iff, Ξ_of_isShortNF_of_char_three, twoTorsionPolynomial_discr_isUnit, variableChange_Ξ, twoTorsionPolynomial_disc_isUnit, Ξ_integral_of_isIntegral, isUnit_Ξ, Ξ_of_isCharNeTwoNF, coe_Ξ', Ξ_of_isCharTwoJEqZeroNF_of_char_two, twoTorsionPolynomial_disc, Ξ_of_isCharTwoJNeZeroNF_of_char_two, isElliptic_iff, Ξ_of_isCharThreeJNeZeroNF, twoTorsionPolynomial_discr, IsGoodReduction.goodReduction, map_Ξ, Ξ_of_isCharThreeJNeZeroNF_of_char_three, ofJ1728_Ξ, Ξ_of_char_two
|
Ξ' π | CompOp | 11 mathmath: j_of_char_two, variableChange_Ξ', j_of_char_three, coe_map_Ξ', coe_inv_variableChange_Ξ', inv_variableChange_Ξ', coe_inv_map_Ξ', coe_Ξ', coe_variableChange_Ξ', map_Ξ', inv_map_Ξ'
|