Documentation Verification Report

Weierstrass

πŸ“ Source: Mathlib/AlgebraicGeometry/EllipticCurve/Weierstrass.lean

Statistics

MetricCount
DefinitionsWeierstrassCurve, IsElliptic, a₁, aβ‚‚, a₃, aβ‚„, a₆, baseChange, bβ‚‚, bβ‚„, b₆, bβ‚ˆ, cβ‚„, c₆, instInhabited, j, map, twoTorsionPolynomial, Ξ”, Ξ”'
20
TheoremsisUnit, b_relation, b_relation_of_char_three, b_relation_of_char_two, bβ‚‚_of_char_three, bβ‚‚_of_char_two, bβ‚„_of_char_three, bβ‚„_of_char_two, b₆_of_char_three, b₆_of_char_two, bβ‚ˆ_of_char_three, bβ‚ˆ_of_char_two, c_relation, c_relation_of_char_three, c_relation_of_char_two, coe_inv_map_Ξ”', coe_map_Ξ”', coe_Ξ”', cβ‚„_of_char_three, cβ‚„_of_char_two, c₆_of_char_three, c₆_of_char_two, ext, ext_iff, instIsEllipticMap, inv_map_Ξ”', isElliptic_iff, isUnit_Ξ”, j_eq_zero, j_eq_zero_iff, j_eq_zero_iff', j_eq_zero_iff_of_char_three, j_eq_zero_iff_of_char_three', j_eq_zero_iff_of_char_two, j_eq_zero_iff_of_char_two', j_eq_zero_of_char_three, j_eq_zero_of_char_two, j_of_char_three, j_of_char_two, map_a₁, map_aβ‚‚, map_a₃, map_aβ‚„, map_a₆, map_baseChange, map_bβ‚‚, map_bβ‚„, map_b₆, map_bβ‚ˆ, map_cβ‚„, map_c₆, map_id, map_injective, map_j, map_map, map_Ξ”, map_Ξ”', twoTorsionPolynomial_disc, twoTorsionPolynomial_disc_isUnit, twoTorsionPolynomial_disc_ne_zero, twoTorsionPolynomial_disc_ne_zero_of_isElliptic, twoTorsionPolynomial_disc_of_char_three, twoTorsionPolynomial_disc_of_char_two, twoTorsionPolynomial_discr, twoTorsionPolynomial_discr_isUnit, twoTorsionPolynomial_discr_ne_zero, twoTorsionPolynomial_discr_ne_zero_of_isElliptic, twoTorsionPolynomial_discr_of_char_three, twoTorsionPolynomial_discr_of_char_two, twoTorsionPolynomial_of_char_three, twoTorsionPolynomial_of_char_two, Ξ”_of_char_three, Ξ”_of_char_two
73
Total93

WeierstrassCurve

Definitions

NameCategoryTheorems
IsElliptic πŸ“–CompData
8 mathmath: instIsEllipticOfJ0OfFactIsUnitOfNat, instIsEllipticHSMulVariableChange, instIsEllipticOfJNe0Or1728OfFactIsUnitHSubOfNat, instIsEllipticOfJ1728OfFactIsUnitOfNat, instIsEllipticMap, isElliptic_iff, isGoodReduction_iff_isElliptic_reduction, instIsEllipticOfJ
a₁ πŸ“–CompOp
77 mathmath: bβ‚‚_of_char_three, j_of_char_two, Projective.eval_polynomial, Projective.negY_eq, bβ‚ˆ_of_char_two, variableChange_a₁, isCharTwoJNeZeroNF_iff, Jacobian.eval_polynomialY, Jacobian.negY_eq, Projective.dblU_eq, bβ‚‚_of_char_two, Affine.equation_iff', Affine.polynomial_eq, a₁_of_isShortNF, Jacobian.polynomialY_eq, Jacobian.eval_polynomialX, a₁_of_isCharTwoJNeZeroNF, Projective.eval_polynomialX, toCharNeTwoNF_s, Projective.negAddY_eq', Affine.slope_of_Y_ne, bβ‚„_of_char_three, Projective.polynomialZ_eq, a₁_of_isCharNeTwoNF, Jacobian.addX_eq', isCharThreeJNeZeroNF_iff, Affine.CoordinateRing.norm_smul_basis, isCharNeTwoNF_iff, variableChange_def, Affine.addPolynomial_eq, variableChange_aβ‚‚, variableChange_a₃, Projective.eval_polynomialZ, Projective.polynomialX_eq, Projective.polynomialY_eq, Projective.negDblY_eq, Projective.addX_eq, variableChange_aβ‚„, a₁_of_isCharTwoJEqZeroNF, ext_iff, Jacobian.polynomialZ_eq, Jacobian.dblU_eq, isCharTwoJEqZeroNF_iff, bβ‚„_of_char_two, Jacobian.equation_iff, Projective.negDblY_eq', Affine.equation_iff, isShortNF_iff, Projective.negAddY_eq, Jacobian.addX_eq, bβ‚ˆ_of_char_three, Affine.evalEval_polynomialY, Jacobian.eval_polynomial, IsCharThreeJNeZeroNF.a₁, Projective.addX_eq', Affine.CoordinateRing.coe_norm_smul_basis, j_eq_zero_iff_of_char_two', Jacobian.polynomialX_eq, c₆_of_char_two, Affine.evalEval_polynomial, Affine.evalEval_polynomialX, IsCharTwoJEqZeroNF.a₁, Projective.dblX_eq, map_a₁, j_eq_zero_iff_of_char_two, a₁_of_isCharThreeJNeZeroNF, Projective.equation_iff, IsCharTwoJNeZeroNF.a₁, Projective.dblX_eq', IsCharNeTwoNF.a₁, variableChange_a₆, Projective.eval_polynomialY, Jacobian.eval_polynomialZ, IsShortNF.a₁, Affine.CoordinateRing.smul_basis_mul_Y, Ξ”_of_char_two, cβ‚„_of_char_two
aβ‚‚ πŸ“–CompOp
68 mathmath: bβ‚‚_of_char_three, map_aβ‚‚, c₆_of_isCharThreeJNeZeroNF_of_char_three, Projective.eval_polynomial, bβ‚ˆ_of_char_two, bβ‚‚_of_isCharThreeJNeZeroNF, bβ‚ˆ_of_isCharNeTwoNF, Projective.dblU_eq, Affine.equation_iff', Affine.polynomial_eq, bβ‚‚_of_isCharTwoJNeZeroNF, bβ‚‚_of_isCharNeTwoNF, Jacobian.eval_polynomialX, c₆_of_isCharThreeJNeZeroNF, Projective.eval_polynomialX, Projective.negAddY_eq', Affine.slope_of_Y_ne, cβ‚„_of_isCharThreeJNeZeroNF, Affine.slope_of_Y_ne', IsShortNF.aβ‚‚, Projective.polynomialZ_eq, Jacobian.addX_eq', Affine.CoordinateRing.norm_smul_basis, variableChange_def, Affine.addPolynomial_eq, variableChange_aβ‚‚, Projective.eval_polynomialZ, Projective.polynomialX_eq, bβ‚ˆ_of_isCharThreeJNeZeroNF, Projective.negDblY_eq, Projective.addX_eq, variableChange_aβ‚„, c₆_of_isCharNeTwoNF, ext_iff, Jacobian.polynomialZ_eq, Jacobian.dblU_eq, isCharTwoJEqZeroNF_iff, Ξ”_of_isCharNeTwoNF, Jacobian.equation_iff, Projective.negDblY_eq', Affine.equation_iff, isShortNF_iff, Projective.negAddY_eq, toShortNFOfCharThree_aβ‚‚, Jacobian.addX_eq, bβ‚ˆ_of_char_three, Jacobian.eval_polynomial, Projective.addX_eq', cβ‚„_of_isCharNeTwoNF, Jacobian.polynomialX_eq, Affine.evalEval_polynomial, bβ‚‚_of_isCharThreeJNeZeroNF_of_char_three, Affine.evalEval_polynomialX, Ξ”_of_isCharThreeJNeZeroNF, Projective.dblX_eq, Projective.equation_iff, aβ‚‚_of_isShortNF, Projective.dblX_eq', cβ‚„_of_isCharThreeJNeZeroNF_of_char_three, Ξ”_of_isCharThreeJNeZeroNF_of_char_three, aβ‚‚_of_isCharTwoJEqZeroNF, variableChange_a₆, Jacobian.eval_polynomialZ, bβ‚ˆ_of_isCharThreeJNeZeroNF_of_char_three, j_of_isCharThreeJNeZeroNF_of_char_three, Affine.CoordinateRing.smul_basis_mul_Y, IsCharTwoJEqZeroNF.aβ‚‚, bβ‚ˆ_of_isCharTwoJNeZeroNF
a₃ πŸ“–CompOp
51 mathmath: Projective.eval_polynomial, toCharNeTwoNF_t, Projective.negY_eq, bβ‚ˆ_of_char_two, isCharTwoJNeZeroNF_iff, Jacobian.eval_polynomialY, IsCharTwoJNeZeroNF.a₃, Jacobian.negY_eq, a₃_of_isCharThreeJNeZeroNF, Affine.equation_iff', Affine.polynomial_eq, b₆_of_char_three, Jacobian.polynomialY_eq, bβ‚„_of_char_three, Projective.polynomialZ_eq, isCharThreeJNeZeroNF_iff, Affine.CoordinateRing.norm_smul_basis, isCharNeTwoNF_iff, variableChange_def, Affine.addPolynomial_eq, variableChange_a₃, Projective.eval_polynomialZ, IsShortNF.a₃, a₃_of_isCharNeTwoNF, Projective.polynomialY_eq, variableChange_aβ‚„, ext_iff, Jacobian.polynomialZ_eq, bβ‚„_of_char_two, Affine.evalEval_polynomialY_zero, Jacobian.equation_iff, Affine.equation_iff, isShortNF_iff, Ξ”_of_isCharTwoJEqZeroNF_of_char_two, bβ‚ˆ_of_char_three, Affine.evalEval_polynomialY, Jacobian.eval_polynomial, Affine.CoordinateRing.coe_norm_smul_basis, Affine.evalEval_polynomial, IsCharNeTwoNF.a₃, a₃_of_isShortNF, map_a₃, IsCharThreeJNeZeroNF.a₃, b₆_of_char_two, Projective.equation_iff, variableChange_a₆, Projective.eval_polynomialY, Jacobian.eval_polynomialZ, Affine.CoordinateRing.smul_basis_mul_Y, Ξ”_of_char_two, a₃_of_isCharTwoJNeZeroNF
aβ‚„ πŸ“–CompOp
57 mathmath: Projective.eval_polynomial, bβ‚ˆ_of_char_two, Ξ”_of_isCharTwoJEqZeroNF, isCharTwoJNeZeroNF_iff, bβ‚ˆ_of_isCharNeTwoNF, Projective.dblU_eq, Affine.equation_iff', Affine.polynomial_eq, bβ‚ˆ_of_isCharTwoJEqZeroNF_of_char_two, bβ‚„_of_isShortNF_of_char_three, bβ‚ˆ_of_isCharTwoJEqZeroNF, Jacobian.eval_polynomialX, Projective.eval_polynomialX, Affine.slope_of_Y_ne, Affine.slope_of_Y_ne', bβ‚„_of_char_three, Projective.polynomialZ_eq, map_aβ‚„, Ξ”_of_isShortNF, isCharThreeJNeZeroNF_iff, Affine.CoordinateRing.norm_smul_basis, aβ‚„_of_isCharThreeJNeZeroNF, Ξ”_of_isShortNF_of_char_three, variableChange_def, Affine.addPolynomial_eq, Projective.eval_polynomialZ, bβ‚„_of_isShortNF, Projective.polynomialX_eq, cβ‚„_of_isShortNF, variableChange_aβ‚„, c₆_of_isCharNeTwoNF, ext_iff, j_of_isCharTwoJEqZeroNF, Jacobian.polynomialZ_eq, Jacobian.dblU_eq, Ξ”_of_isCharNeTwoNF, Jacobian.equation_iff, Affine.equation_iff, IsCharThreeJNeZeroNF.aβ‚„, bβ‚ˆ_of_char_three, Jacobian.eval_polynomial, IsCharTwoJNeZeroNF.aβ‚„, cβ‚„_of_isCharNeTwoNF, Jacobian.polynomialX_eq, Affine.evalEval_polynomial, Affine.evalEval_polynomialX, cβ‚„_of_isCharTwoJEqZeroNF, bβ‚„_of_isCharNeTwoNF, bβ‚ˆ_of_isShortNF, Projective.equation_iff, j_of_isShortNF, bβ‚„_of_isCharTwoJEqZeroNF, aβ‚„_of_isCharTwoJNeZeroNF, variableChange_a₆, Affine.evalEval_polynomialX_zero, Jacobian.eval_polynomialZ, Affine.CoordinateRing.smul_basis_mul_Y
a₆ πŸ“–CompOp
48 mathmath: Projective.eval_polynomial, bβ‚ˆ_of_char_two, bβ‚ˆ_of_isCharNeTwoNF, Affine.equation_iff', Affine.polynomial_eq, Affine.nonsingular_zero, b₆_of_char_three, c₆_of_isCharThreeJNeZeroNF, bβ‚ˆ_of_isCharTwoJNeZeroNF_of_char_two, b₆_of_isCharTwoJNeZeroNF, Projective.polynomialZ_eq, Ξ”_of_isShortNF, b₆_of_isShortNF, map_a₆, Affine.CoordinateRing.norm_smul_basis, b₆_of_isCharThreeJNeZeroNF, variableChange_def, Affine.addPolynomial_eq, Projective.eval_polynomialZ, Affine.evalEval_polynomial_zero, Affine.equation_zero, c₆_of_isCharTwoJNeZeroNF, bβ‚ˆ_of_isCharThreeJNeZeroNF, b₆_of_isCharThreeJNeZeroNF_of_char_three, c₆_of_isCharNeTwoNF, ext_iff, Jacobian.polynomialZ_eq, b₆_of_isShortNF_of_char_three, Ξ”_of_isCharNeTwoNF, Jacobian.equation_iff, Affine.equation_iff, bβ‚ˆ_of_char_three, Jacobian.eval_polynomial, b₆_of_isCharNeTwoNF, Affine.evalEval_polynomial, Ξ”_of_isCharTwoJNeZeroNF_of_char_two, Ξ”_of_isCharThreeJNeZeroNF, Projective.equation_iff, j_of_isShortNF, Ξ”_of_isCharThreeJNeZeroNF_of_char_three, c₆_of_isShortNF, variableChange_a₆, j_of_isCharTwoJNeZeroNF_of_char_two, Jacobian.eval_polynomialZ, bβ‚ˆ_of_isCharThreeJNeZeroNF_of_char_three, j_of_isCharThreeJNeZeroNF_of_char_three, Affine.CoordinateRing.smul_basis_mul_Y, bβ‚ˆ_of_isCharTwoJNeZeroNF
baseChange πŸ“–CompOp
68 mathmath: baseChange_Ξ¨Sq, Affine.baseChange_nonsingular, Projective.baseChange_negDblY, baseChange_preΞ¨, Jacobian.baseChange_polynomialZ, baseChange_preΞ¨β‚„, Projective.baseChange_negAddY, Projective.baseChange_negY, baseChange_Ξ¨β‚‚Sq, baseChange_preΞ¨', Affine.baseChange_negY, baseChange_Οˆβ‚‚, Projective.baseChange_polynomial, Affine.baseChange_negPolynomial, Projective.baseChange_dblXYZ, Jacobian.baseChange_nonsingular, Jacobian.baseChange_addX, Jacobian.baseChange_equation, Projective.baseChange_addXYZ, Jacobian.baseChange_addXYZ, baseChange_Ο†, Affine.Point.map_injective, Jacobian.baseChange_dblX, Jacobian.baseChange_negDblY, Jacobian.baseChange_polynomialY, Projective.baseChange_polynomialY, Jacobian.baseChange_dblY, baseChange_integralModel_eq, baseChange_Ξ¦, Projective.baseChange_equation, Jacobian.baseChange_dblU, Jacobian.baseChange_polynomial, Affine.Point.map_baseChange, Projective.baseChange_dblZ, Affine.baseChange_addPolynomial, baseChange_Ξ¨, Projective.baseChange_polynomialX, Affine.baseChange_polynomialX, Jacobian.baseChange_neg, Affine.Point.map_map, map_baseChange, Affine.baseChange_equation, Affine.baseChange_polynomial, Jacobian.baseChange_dblXYZ, baseChange_ψ, Projective.baseChange_addX, Jacobian.baseChange_dblZ, Jacobian.baseChange_polynomialX, Projective.baseChange_dblX, Projective.baseChange_dblU, Projective.baseChange_nonsingular, Affine.baseChange_slope, Affine.baseChange_addY, Projective.baseChange_neg, IsIntegral.integral, Projective.baseChange_polynomialZ, Affine.baseChange_polynomialY, Affine.baseChange_addX, Jacobian.baseChange_negY, Affine.Point.map_zero, Projective.baseChange_dblY, isIntegral_iff, Projective.baseChange_addY, Jacobian.baseChange_addY, Affine.baseChange_negAddY, baseChange_Ψ₃, Jacobian.baseChange_negAddY, Affine.Point.map_id
bβ‚‚ πŸ“–CompOp
28 mathmath: bβ‚‚_of_char_three, cβ‚„_of_char_three, b_relation_of_char_two, bβ‚‚_of_isCharThreeJNeZeroNF, j_of_char_three, bβ‚‚_of_char_two, bβ‚‚_of_isCharTwoJNeZeroNF, bβ‚‚_of_isCharNeTwoNF, variableChange_bβ‚ˆ, Ξ”_of_char_three, variableChange_bβ‚‚, variableChange_b₆, cβ‚„_of_isCharTwoJNeZeroNF, bβ‚‚_of_isShortNF, c₆_of_isCharTwoJNeZeroNF, bβ‚‚_of_isCharTwoJNeZeroNF_of_char_two, b_relation_of_char_three, b_relation, toShortNFOfCharThree_aβ‚‚, twoTorsionPolynomial_of_char_three, bβ‚‚_of_isCharThreeJNeZeroNF_of_char_three, j_eq_zero_iff_of_char_three, c₆_of_char_three, twoTorsionPolynomial_of_char_two, j_eq_zero_iff_of_char_three', map_bβ‚‚, bβ‚‚_of_isCharTwoJEqZeroNF, variableChange_bβ‚„
bβ‚„ πŸ“–CompOp
19 mathmath: b_relation_of_char_two, bβ‚„_of_isShortNF_of_char_three, variableChange_bβ‚ˆ, Ξ”_of_char_three, bβ‚„_of_char_three, variableChange_b₆, bβ‚„_of_isShortNF, bβ‚„_of_isCharThreeJNeZeroNF, bβ‚„_of_char_two, b_relation_of_char_three, b_relation, Ξ¦_two, twoTorsionPolynomial_of_char_three, bβ‚„_of_isCharTwoJNeZeroNF, map_bβ‚„, bβ‚„_of_isCharNeTwoNF, bβ‚„_of_isCharTwoJEqZeroNF, bβ‚„_of_isCharTwoJEqZeroNF_of_char_two, variableChange_bβ‚„
b₆ πŸ“–CompOp
21 mathmath: Ξ”_of_isCharTwoJEqZeroNF, b_relation_of_char_two, b₆_of_char_three, b₆_of_isCharTwoJNeZeroNF_of_char_two, variableChange_bβ‚ˆ, b₆_of_isCharTwoJNeZeroNF, variableChange_b₆, b₆_of_isShortNF, map_b₆, b₆_of_isCharThreeJNeZeroNF, c₆_of_isCharTwoJEqZeroNF, b₆_of_isCharThreeJNeZeroNF_of_char_three, j_of_isCharTwoJEqZeroNF, b₆_of_isShortNF_of_char_three, b_relation_of_char_three, b_relation, Ξ¦_two, twoTorsionPolynomial_of_char_three, b₆_of_isCharNeTwoNF, twoTorsionPolynomial_of_char_two, b₆_of_char_two
bβ‚ˆ πŸ“–CompOp
17 mathmath: bβ‚ˆ_of_char_two, bβ‚ˆ_of_isCharNeTwoNF, bβ‚ˆ_of_isCharTwoJEqZeroNF_of_char_two, bβ‚ˆ_of_isCharTwoJEqZeroNF, variableChange_bβ‚ˆ, bβ‚ˆ_of_isCharTwoJNeZeroNF_of_char_two, map_bβ‚ˆ, Ξ”_of_char_three, bβ‚ˆ_of_isCharThreeJNeZeroNF, b_relation_of_char_three, b_relation, Ξ¦_two, bβ‚ˆ_of_char_three, bβ‚ˆ_of_isShortNF, bβ‚ˆ_of_isCharThreeJNeZeroNF_of_char_three, Ξ”_of_char_two, bβ‚ˆ_of_isCharTwoJNeZeroNF
cβ‚„ πŸ“–CompOp
21 mathmath: cβ‚„_of_char_three, c_relation, ofJNe0Or1728_cβ‚„, cβ‚„_of_isCharThreeJNeZeroNF, j_eq_zero_iff', cβ‚„_of_isCharTwoJNeZeroNF, ofJ0_cβ‚„, cβ‚„_of_isShortNF, cβ‚„_of_isShortNF_of_char_three, cβ‚„_of_isCharNeTwoNF, map_cβ‚„, cβ‚„_of_isCharTwoJEqZeroNF_of_char_two, cβ‚„_of_isCharTwoJEqZeroNF, cβ‚„_of_isCharThreeJNeZeroNF_of_char_three, variableChange_cβ‚„, cβ‚„_of_isCharTwoJNeZeroNF_of_char_two, j_eq_zero_iff, c_relation_of_char_three, cβ‚„_of_char_two, ofJ1728_cβ‚„, c_relation_of_char_two
c₆ πŸ“–CompOp
16 mathmath: c₆_of_isCharThreeJNeZeroNF_of_char_three, c_relation, map_c₆, c₆_of_isCharThreeJNeZeroNF, variableChange_c₆, c₆_of_isCharTwoJEqZeroNF, c₆_of_isCharTwoJNeZeroNF, c₆_of_isCharTwoJEqZeroNF_of_char_two, c₆_of_isCharNeTwoNF, c₆_of_char_two, c₆_of_char_three, c₆_of_isShortNF, c₆_of_isShortNF_of_char_three, c_relation_of_char_three, c₆_of_isCharTwoJNeZeroNF_of_char_two, c_relation_of_char_two
instInhabited πŸ“–CompOpβ€”
j πŸ“–CompOp
23 mathmath: j_of_char_two, variableChange_j, ofJ_j, j_of_char_three, j_eq_zero_iff', j_of_isCharTwoJEqZeroNF_of_char_two, j_eq_zero, ofJ1728_j, j_of_isCharTwoJEqZeroNF, ofJ0_j, j_eq_zero_of_char_three, j_eq_zero_iff_of_char_two', ofJNe0Or1728_j, j_eq_zero_iff_of_char_three, j_of_isShortNF_of_char_three, j_eq_zero_iff_of_char_two, j_eq_zero_iff_of_char_three', j_of_isShortNF, map_j, j_eq_zero_of_char_two, j_of_isCharTwoJNeZeroNF_of_char_two, j_eq_zero_iff, j_of_isCharThreeJNeZeroNF_of_char_three
map πŸ“–CompOp
91 mathmath: Jacobian.map_addX, Projective.map_dblZ, map_Οˆβ‚‚, Projective.map_neg, map_aβ‚‚, map_Ξ¨β‚‚Sq, map_Ο†, Jacobian.map_equation, Jacobian.map_dblX, map_Ξ¨, Jacobian.map_negDblY, Projective.map_negAddY, Affine.map_polynomialY, map_c₆, Affine.map_addY, map_id, Jacobian.map_negY, Jacobian.map_dblZ, coe_map_Ξ”', map_bβ‚ˆ, Projective.map_negDblY, map_aβ‚„, Jacobian.map_add, Affine.map_negPolynomial, map_injective, map_a₆, map_b₆, Jacobian.map_dblXYZ, Jacobian.map_addY, Affine.map_slope, Projective.map_polynomialX, Affine.CoordinateRing.map_mk, map_Ξ¦, map_preΞ¨', Projective.map_addY, Projective.map_dblY, Jacobian.map_nonsingular, Projective.map_dblU, Affine.map_polynomial, coe_inv_map_Ξ”', map_Ξ¨Sq, map_variableChange, map_baseChange, Affine.map_nonsingular, Affine.CoordinateRing.map_injective, Affine.map_negAddY, Projective.map_equation, Affine.map_equation, instIsEllipticMap, Jacobian.map_polynomialZ, Projective.map_addXYZ, Projective.map_polynomialZ, Jacobian.Equation.map, map_preΞ¨, map_Ψ₃, Projective.map_dblXYZ, Jacobian.map_negAddY, Jacobian.map_polynomial, map_cβ‚„, Affine.map_polynomialX, map_preΞ¨β‚„, map_bβ‚„, Jacobian.map_dblY, Projective.map_addX, Projective.map_addZ, map_Ξ”', Jacobian.map_dblU, Projective.Equation.map, Affine.Equation.map, Projective.map_add, inv_map_Ξ”', Affine.map_addPolynomial, map_a₃, map_a₁, Affine.map_negY, map_ψ, map_j, Jacobian.map_polynomialY, Affine.CoordinateRing.map_smul, map_Ξ”, Affine.map_addX, Projective.map_polynomialY, Projective.map_polynomial, Projective.map_nonsingular, Projective.map_negY, map_bβ‚‚, Jacobian.map_polynomialX, Jacobian.map_neg, map_map, Jacobian.map_addXYZ, Projective.map_dblX
twoTorsionPolynomial πŸ“–CompOp
11 mathmath: twoTorsionPolynomial_discr_of_char_three, twoTorsionPolynomial_disc_of_char_three, twoTorsionPolynomial_disc_of_char_two, Ξ¨β‚‚Sq_eq, twoTorsionPolynomial_discr_isUnit, twoTorsionPolynomial_disc_isUnit, twoTorsionPolynomial_of_char_three, twoTorsionPolynomial_disc, twoTorsionPolynomial_discr_of_char_two, twoTorsionPolynomial_of_char_two, twoTorsionPolynomial_discr
Ξ” πŸ“–CompOp
31 mathmath: c_relation, twoTorsionPolynomial_discr_of_char_three, ofJNe0Or1728_Ξ”, twoTorsionPolynomial_disc_of_char_three, Ξ”_of_isCharTwoJEqZeroNF, valuation_Ξ”_aux_eq_of_isIntegral, integralModel_Ξ”_eq, IsElliptic.isUnit, ofJ0_Ξ”, Ξ”_of_char_three, Ξ”_of_isShortNF, isGoodReduction_iff, Ξ”_of_isShortNF_of_char_three, twoTorsionPolynomial_discr_isUnit, variableChange_Ξ”, twoTorsionPolynomial_disc_isUnit, Ξ”_integral_of_isIntegral, isUnit_Ξ”, Ξ”_of_isCharNeTwoNF, coe_Ξ”', Ξ”_of_isCharTwoJEqZeroNF_of_char_two, twoTorsionPolynomial_disc, Ξ”_of_isCharTwoJNeZeroNF_of_char_two, isElliptic_iff, Ξ”_of_isCharThreeJNeZeroNF, twoTorsionPolynomial_discr, IsGoodReduction.goodReduction, map_Ξ”, Ξ”_of_isCharThreeJNeZeroNF_of_char_three, ofJ1728_Ξ”, Ξ”_of_char_two
Ξ”' πŸ“–CompOp
11 mathmath: j_of_char_two, variableChange_Ξ”', j_of_char_three, coe_map_Ξ”', coe_inv_variableChange_Ξ”', inv_variableChange_Ξ”', coe_inv_map_Ξ”', coe_Ξ”', coe_variableChange_Ξ”', map_Ξ”', inv_map_Ξ”'

Theorems

NameKindAssumesProvesValidatesDepends On
b_relation πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
bβ‚ˆ
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
bβ‚‚
b₆
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
bβ‚„
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
b_relation_of_char_three πŸ“–mathematicalβ€”bβ‚ˆ
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
bβ‚‚
b₆
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
bβ‚„
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
b_relation
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
b_relation_of_char_two πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
bβ‚‚
b₆
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
bβ‚„
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
b_relation
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
bβ‚‚_of_char_three πŸ“–mathematicalβ€”bβ‚‚
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₁
aβ‚‚
β€”bβ‚‚.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
bβ‚‚_of_char_two πŸ“–mathematicalβ€”bβ‚‚
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₁
β€”bβ‚‚.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
bβ‚„_of_char_three πŸ“–mathematicalβ€”bβ‚„
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
aβ‚„
Distrib.toMul
a₁
a₃
β€”bβ‚„.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
bβ‚„_of_char_two πŸ“–mathematicalβ€”bβ‚„
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
a₁
a₃
β€”bβ‚„.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
b₆_of_char_three πŸ“–mathematicalβ€”b₆
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₃
a₆
β€”b₆.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
b₆_of_char_two πŸ“–mathematicalβ€”b₆
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₃
β€”b₆.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
bβ‚ˆ_of_char_three πŸ“–mathematicalβ€”bβ‚ˆ
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₁
a₆
aβ‚‚
a₃
aβ‚„
β€”bβ‚ˆ.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
bβ‚ˆ_of_char_two πŸ“–mathematicalβ€”bβ‚ˆ
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₁
a₆
a₃
aβ‚„
aβ‚‚
β€”bβ‚ˆ.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
c_relation πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
Ξ”
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
cβ‚„
c₆
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_bit1
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
c_relation_of_char_three πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
cβ‚„
c₆
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
c_relation
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
c_relation_of_char_two πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
cβ‚„
c₆
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
c_relation
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
coe_inv_map_Ξ”' πŸ“–mathematicalβ€”Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units
Units.instInv
Ξ”'
map
instIsEllipticMap
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”instIsEllipticMap
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_Ξ”'
coe_map_Ξ”' πŸ“–mathematicalβ€”Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Ξ”'
map
instIsEllipticMap
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”instIsEllipticMap
coe_Ξ”'
map_Ξ”
coe_Ξ”' πŸ“–mathematicalβ€”Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Ξ”'
Ξ”
β€”β€”
cβ‚„_of_char_three πŸ“–mathematicalβ€”cβ‚„
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
bβ‚‚
β€”cβ‚„.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
cβ‚„_of_char_two πŸ“–mathematicalβ€”cβ‚„
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₁
β€”cβ‚„.eq_1
bβ‚‚_of_char_two
Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
c₆_of_char_three πŸ“–mathematicalβ€”c₆
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
bβ‚‚
β€”c₆.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
c₆_of_char_two πŸ“–mathematicalβ€”c₆
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₁
β€”c₆.eq_1
bβ‚‚_of_char_two
Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
ext πŸ“–β€”a₁
aβ‚‚
a₃
aβ‚„
a₆
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”a₁
aβ‚‚
a₃
aβ‚„
a₆
β€”ext
instIsEllipticMap πŸ“–mathematicalβ€”IsElliptic
map
β€”map_Ξ”
IsUnit.map
isUnit_Ξ”
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
inv_map_Ξ”' πŸ“–mathematicalβ€”Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instInv
Ξ”'
map
instIsEllipticMap
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Units.instMulOneClass
MonoidHom.instFunLike
Units.map
MonoidHomClass.toMonoidHom
RingHom
Semiring.toNonAssocSemiring
Monoid.toMulOneClass
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
NonAssocSemiring.toMulZeroOneClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
β€”instIsEllipticMap
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_Ξ”'
map_inv
MonoidHom.instMonoidHomClass
isElliptic_iff πŸ“–mathematicalβ€”IsElliptic
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Ξ”
β€”β€”
isUnit_Ξ” πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Ξ”
β€”IsElliptic.isUnit
j_eq_zero πŸ“–mathematicalcβ‚„
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
jβ€”j_eq_zero_iff'
zero_pow
three_ne_zero
j_eq_zero_iff πŸ“–mathematicalβ€”j
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
cβ‚„
β€”j_eq_zero_iff'
pow_eq_zero_iff
three_ne_zero
j_eq_zero_iff' πŸ“–mathematicalβ€”j
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
cβ‚„
β€”j.eq_1
Units.mul_right_eq_zero
j_eq_zero_iff_of_char_three πŸ“–mathematicalβ€”j
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
bβ‚‚
β€”j_eq_zero_iff_of_char_three'
pow_eq_zero_iff
j_eq_zero_iff_of_char_three' πŸ“–mathematicalβ€”j
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
bβ‚‚
β€”j_of_char_three
Units.mul_right_eq_zero
j_eq_zero_iff_of_char_two πŸ“–mathematicalβ€”j
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
a₁
β€”j_eq_zero_iff_of_char_two'
pow_eq_zero_iff
j_eq_zero_iff_of_char_two' πŸ“–mathematicalβ€”j
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₁
β€”j_of_char_two
Units.mul_right_eq_zero
j_eq_zero_of_char_three πŸ“–mathematicalbβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
jβ€”j_eq_zero_iff_of_char_three'
zero_pow
j_eq_zero_of_char_two πŸ“–mathematicala₁
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
jβ€”j_eq_zero_iff_of_char_two'
zero_pow
j_of_char_three πŸ“–mathematicalβ€”j
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units
Units.instInv
Ξ”'
Monoid.toNatPow
bβ‚‚
β€”j.eq_1
cβ‚„_of_char_three
pow_mul
j_of_char_two πŸ“–mathematicalβ€”j
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Units
Units.instInv
Ξ”'
Monoid.toNatPow
a₁
β€”j.eq_1
cβ‚„_of_char_two
pow_mul
map_a₁ πŸ“–mathematicalβ€”a₁
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”β€”
map_aβ‚‚ πŸ“–mathematicalβ€”aβ‚‚
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”β€”
map_a₃ πŸ“–mathematicalβ€”a₃
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”β€”
map_aβ‚„ πŸ“–mathematicalβ€”aβ‚„
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”β€”
map_a₆ πŸ“–mathematicalβ€”a₆
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”β€”
map_baseChange πŸ“–mathematicalβ€”map
baseChange
RingHomClass.toRingHom
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap_of_tower
map_bβ‚‚ πŸ“–mathematicalβ€”bβ‚‚
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_ofNat
map_bβ‚„ πŸ“–mathematicalβ€”bβ‚„
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_ofNat
map_b₆ πŸ“–mathematicalβ€”b₆
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_ofNat
map_bβ‚ˆ πŸ“–mathematicalβ€”bβ‚ˆ
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_add
AddMonoidHomClass.toAddHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_ofNat
map_cβ‚„ πŸ“–mathematicalβ€”cβ‚„
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”map_bβ‚‚
map_bβ‚„
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_ofNat
map_c₆ πŸ“–mathematicalβ€”c₆
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”map_bβ‚‚
map_bβ‚„
map_b₆
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_add
AddMonoidHomClass.toAddHomClass
map_neg
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_ofNat
map_id πŸ“–mathematicalβ€”map
RingHom.id
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
map_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
WeierstrassCurve
map
β€”ext
map_j πŸ“–mathematicalβ€”j
map
instIsEllipticMap
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”instIsEllipticMap
j.eq_1
coe_inv_map_Ξ”'
map_cβ‚„
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_map πŸ“–mathematicalβ€”map
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
map_Ξ” πŸ“–mathematicalβ€”Ξ”
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”map_bβ‚‚
map_bβ‚ˆ
map_bβ‚„
map_b₆
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_sub
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_neg
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_ofNat
map_Ξ”' πŸ“–mathematicalβ€”Ξ”'
map
instIsEllipticMap
DFunLike.coe
MonoidHom
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
MulOneClass.toMulOne
Units.instMulOneClass
MonoidHom.instFunLike
Units.map
MonoidHomClass.toMonoidHom
RingHom
Semiring.toNonAssocSemiring
Monoid.toMulOneClass
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
NonAssocSemiring.toMulZeroOneClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
β€”Units.ext
instIsEllipticMap
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
coe_map_Ξ”'
twoTorsionPolynomial_disc πŸ“–mathematicalβ€”Cubic.discr
CommRing.toRing
twoTorsionPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
Ξ”
β€”twoTorsionPolynomial_discr
twoTorsionPolynomial_disc_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
Cubic.discr
twoTorsionPolynomial
Ξ”
β€”twoTorsionPolynomial_discr_isUnit
twoTorsionPolynomial_disc_ne_zero πŸ“–β€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
Ξ”
β€”β€”twoTorsionPolynomial_discr_ne_zero
twoTorsionPolynomial_disc_ne_zero_of_isElliptic πŸ“–β€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”β€”twoTorsionPolynomial_discr_ne_zero_of_isElliptic
twoTorsionPolynomial_disc_of_char_three πŸ“–mathematicalβ€”Cubic.discr
CommRing.toRing
twoTorsionPolynomial
Ξ”
β€”twoTorsionPolynomial_discr_of_char_three
twoTorsionPolynomial_disc_of_char_two πŸ“–mathematicalβ€”Cubic.discr
CommRing.toRing
twoTorsionPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”twoTorsionPolynomial_discr_of_char_two
twoTorsionPolynomial_discr πŸ“–mathematicalβ€”Cubic.discr
CommRing.toRing
twoTorsionPolynomial
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.instAtLeastTwoHAddOfNat
Ξ”
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.pow_bit1
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.neg_congr
twoTorsionPolynomial_discr_isUnit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
Cubic.discr
twoTorsionPolynomial
Ξ”
β€”Nat.instAtLeastTwoHAddOfNat
twoTorsionPolynomial_discr
IsUnit.mul_iff
instIsDedekindFiniteMonoid
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.trans
Mathlib.Meta.NormNum.IsNatPowT.bit0
IsUnit.pow
twoTorsionPolynomial_discr_ne_zero πŸ“–β€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
Ξ”
β€”β€”Nat.instAtLeastTwoHAddOfNat
IsUnit.ne_zero
twoTorsionPolynomial_discr_isUnit
twoTorsionPolynomial_discr_ne_zero_of_isElliptic πŸ“–β€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Nat.instAtLeastTwoHAddOfNat
β€”β€”Nat.instAtLeastTwoHAddOfNat
twoTorsionPolynomial_discr_ne_zero
isUnit_Ξ”
twoTorsionPolynomial_discr_of_char_three πŸ“–mathematicalβ€”Cubic.discr
CommRing.toRing
twoTorsionPolynomial
Ξ”
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
twoTorsionPolynomial_discr
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
twoTorsionPolynomial_discr_of_char_two πŸ“–mathematicalβ€”Cubic.discr
CommRing.toRing
twoTorsionPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
twoTorsionPolynomial_discr
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
twoTorsionPolynomial_of_char_three πŸ“–mathematicalβ€”twoTorsionPolynomial
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
bβ‚‚
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
bβ‚„
b₆
β€”twoTorsionPolynomial.eq_1
Cubic.ext
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Nat.cast_one
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_overlap_pf_zero
twoTorsionPolynomial_of_char_two πŸ“–mathematicalβ€”twoTorsionPolynomial
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
bβ‚‚
b₆
β€”twoTorsionPolynomial.eq_1
Cubic.ext
Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.mul_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Ξ”_of_char_three πŸ“–mathematicalβ€”Ξ”
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
bβ‚‚
bβ‚ˆ
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
bβ‚„
β€”Nat.instAtLeastTwoHAddOfNat
Ξ”.eq_1
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Ξ”_of_char_two πŸ“–mathematicalβ€”Ξ”
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
a₁
bβ‚ˆ
a₃
β€”Ξ”.eq_1
bβ‚‚_of_char_two
bβ‚„_of_char_two
b₆_of_char_two
Mathlib.Tactic.LinearCombination.eq_of_eq
Nat.instAtLeastTwoHAddOfNat
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
CharP.cast_eq_zero
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero

WeierstrassCurve.IsElliptic

Theorems

NameKindAssumesProvesValidatesDepends On
isUnit πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
WeierstrassCurve.Ξ”
β€”β€”

(root)

Definitions

NameCategoryTheorems
WeierstrassCurve πŸ“–CompData
40 mathmath: WeierstrassCurve.toShortNF_spec, WeierstrassCurve.variableChange_j, WeierstrassCurve.variableChange_a₁, WeierstrassCurve.variableChange_Ξ”', WeierstrassCurve.toCharNeTwoNF_spec, WeierstrassCurve.toCharThreeNF_spec_of_bβ‚‚_ne_zero, WeierstrassCurve.exists_isMinimal, WeierstrassCurve.instIsEllipticHSMulVariableChange, WeierstrassCurve.exists_variableChange_isCharTwoNF, WeierstrassCurve.variableChange_bβ‚ˆ, WeierstrassCurve.IsMinimal.val_Ξ”_maximal, WeierstrassCurve.variableChange_bβ‚‚, WeierstrassCurve.variableChange_b₆, WeierstrassCurve.map_injective, WeierstrassCurve.exists_variableChange_isCharThreeNF, WeierstrassCurve.variableChange_def, WeierstrassCurve.exists_variableChange_isCharNeTwoNF, WeierstrassCurve.toCharTwoJNeZeroNF_spec, WeierstrassCurve.variableChange_aβ‚‚, WeierstrassCurve.variableChange_a₃, WeierstrassCurve.exists_variableChange_of_j_eq, WeierstrassCurve.variableChange_c₆, WeierstrassCurve.coe_inv_variableChange_Ξ”', WeierstrassCurve.inv_variableChange_Ξ”', WeierstrassCurve.variableChange_Ξ”, WeierstrassCurve.variableChange_aβ‚„, WeierstrassCurve.isMinimal_iff, WeierstrassCurve.map_variableChange, WeierstrassCurve.exists_isIntegral, WeierstrassCurve.toShortNFOfCharThree_spec, WeierstrassCurve.toCharThreeNF_spec, WeierstrassCurve.toShortNFOfCharThree_aβ‚‚, WeierstrassCurve.exists_variableChange_isShortNF, WeierstrassCurve.coe_variableChange_Ξ”', WeierstrassCurve.toCharTwoNF_spec, WeierstrassCurve.toCharThreeNF_spec_of_bβ‚‚_eq_zero, WeierstrassCurve.variableChange_cβ‚„, WeierstrassCurve.variableChange_a₆, WeierstrassCurve.toCharTwoJEqZeroNF_spec, WeierstrassCurve.variableChange_bβ‚„

---

← Back to Index