Documentation Verification Report

GluingOneHypercover

šŸ“ Source: Mathlib/AlgebraicGeometry/GluingOneHypercover.lean

Statistics

MetricCount
DefinitionsoneHypercover, sheafValGluedMk
2
TheoremsoneHypercover_Iā‚€, oneHypercover_I₁, oneHypercover_X, oneHypercover_Y, oneHypercover_f, oneHypercover_p₁, oneHypercover_pā‚‚, sheafValGluedMk_val
8
Total10

AlgebraicGeometry.Scheme.GlueData

Definitions

NameCategoryTheorems
oneHypercover šŸ“–CompOp
7 mathmath: oneHypercover_I₁, oneHypercover_pā‚‚, oneHypercover_X, oneHypercover_Iā‚€, oneHypercover_f, oneHypercover_Y, oneHypercover_p₁
sheafValGluedMk šŸ“–CompOp
1 mathmath: sheafValGluedMk_val

Theorems

NameKindAssumesProvesValidatesDepends On
oneHypercover_Iā‚€ šŸ“–mathematical—CategoryTheory.PreZeroHypercover.Iā‚€
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
glued
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
AlgebraicGeometry.Scheme.zariskiTopology
oneHypercover
CategoryTheory.GlueData.J
toGlueData
——
oneHypercover_I₁ šŸ“–mathematical—CategoryTheory.PreOneHypercover.I₁
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
glued
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
AlgebraicGeometry.Scheme.zariskiTopology
oneHypercover
——
oneHypercover_X šŸ“–mathematical—CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
glued
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
AlgebraicGeometry.Scheme.zariskiTopology
oneHypercover
CategoryTheory.GlueData.U
toGlueData
——
oneHypercover_Y šŸ“–mathematical—CategoryTheory.PreOneHypercover.Y
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
glued
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
AlgebraicGeometry.Scheme.zariskiTopology
oneHypercover
CategoryTheory.GlueData.V
toGlueData
CategoryTheory.GlueData.J
——
oneHypercover_f šŸ“–mathematical—CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
glued
CategoryTheory.PreOneHypercover.toPreZeroHypercover
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
AlgebraicGeometry.Scheme.zariskiTopology
oneHypercover
ι
——
oneHypercover_p₁ šŸ“–mathematical—CategoryTheory.PreOneHypercover.p₁
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
glued
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
AlgebraicGeometry.Scheme.zariskiTopology
oneHypercover
CategoryTheory.GlueData.f
toGlueData
——
oneHypercover_pā‚‚ šŸ“–mathematical—CategoryTheory.PreOneHypercover.pā‚‚
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
glued
CategoryTheory.GrothendieckTopology.OneHypercover.toPreOneHypercover
AlgebraicGeometry.Scheme.zariskiTopology
oneHypercover
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GlueData.V
toGlueData
CategoryTheory.GlueData.J
CategoryTheory.GlueData.U
CategoryTheory.GlueData.t
CategoryTheory.GlueData.f
——
sheafValGluedMk_val šŸ“–mathematicalCategoryTheory.Functor.map
Opposite
AlgebraicGeometry.Scheme
CategoryTheory.Category.opposite
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.types
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
Opposite.op
CategoryTheory.GlueData.U
toGlueData
CategoryTheory.GlueData.V
CategoryTheory.GlueData.J
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.GlueData.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.CategoryStruct.opposite
CategoryTheory.GlueData.t
glued
ι
sheafValGluedMk
—CategoryTheory.Limits.Multifork.IsLimit.sectionsEquiv_apply_val

---

← Back to Index