📁 Source: Mathlib/AlgebraicGeometry/Group/Abelian.lean
instIsClosedImmersionLeftSchemeDiscretePUnitOneOverSpecOf
isCommMonObj_of_isProper_of_geometricallyIntegral
isCommMonObj_of_isProper_of_isIntegral_tensorObj_of_isAlgClosed
IsClosedImmersion
CategoryTheory.Comma.left
Scheme
Scheme.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
Spec
CommRingCat.of
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
instCartesianMonoidalCategoryOverScheme
CategoryTheory.CommaMorphism.left
CategoryTheory.MonObj.one
CategoryTheory.GrpObj.toMonObj
isClosedImmersion_of_comp_eq_id
Unique.instSubsingleton
CategoryTheory.Over.w
CategoryTheory.IsCommMonObj
instBraidedCategoryOverScheme
Scheme.Pullback.instHasPullback
IsProper.instSndScheme
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
Scheme.Pullback.instHasPullbacks
instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian_1
instGeometricallyIntegralSndScheme
Flat.instSndScheme
Flat.instOfSubsingletonCarrierCarrierCommRingCatOfIsIntegral
instIsIntegralSpecOfIsDomainCarrier
instIsDomain
UniversallyOpen.snd
instUniversallyOpenOfIsIntegralOfSubsingletonCarrierCarrierCommRingCat
instIsIntegralPullbackSchemeOfGeometricallyIntegralOfFlatOfUniversallyOpenOfIsLocallyNoetherian
instIsLocallyNoetherianSpecOfIsNoetherianRingCarrier
IsDedekindRing.toIsNoetherian
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
instIsPrincipalIdealRingOfIsSemisimpleRing
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
instIsLocallyNoetherianPullbackSchemeOfLocallyOfFiniteType
IsProper.toLocallyOfFiniteType
AlgebraicClosure.isAlgClosed
CategoryTheory.isCommMonObj_iff_commutator_eq_toUnit_η
CategoryTheory.Functor.map_injective
instFaithfulOverSchemePullbackOfSurjectiveOfFlatOfQuasiCompact
instSurjectiveOfNonemptyOfSubsingletonCarrierCarrierCommRingCat
instNonemptyCarrierCarrierCommRingCatSpecOfNontrivialCarrier
EuclideanDomain.toNontrivial
instQuasiCompactOfIsAffineHom
isAffineHom_of_isAffine
isAffine_Spec
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Functor.map_mul
CategoryTheory.Functor.map_inv'
CategoryTheory.MonObj.comp_mul
CategoryTheory.Functor.Monoidal.μ_fst
CategoryTheory.Functor.Monoidal.μ_snd
CategoryTheory.GrpObj.comp_inv
CategoryTheory.MonObj.one_eq_one
CategoryTheory.MonObj.comp_one
CategoryTheory.Functor.map_one
ValuationRing.isLocalRing
ValuationRing.toPreValuationRing
ValuationRing.of_field
isClosed_discrete
IsLocallyArtinian.discreteTopology
IsArtinianScheme.toIsLocallyArtinian
instIsArtinianSchemeSpecOfIsArtinianRingCarrier
instIsArtinianOfIsSemisimpleModuleOfFinite
IsSemisimpleRing.isSemisimpleModule
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.free_of_finite_type_torsion_free'
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsProper.instCompScheme
IsProper.instFstScheme
LocallyOfFiniteType.jacobsonSpace
instJacobsonSpaceCarrierCarrierCommRingCatSpecOfOfIsJacobsonRing
instIsJacobsonRingOfKrullDimLEOfNatNat
PrimeSpectrum.instKrullDimLEOfNatNat
Function.surjective_to_subsingleton
Surjective.instFstScheme
CategoryTheory.Limits.limit.lift_π
CategoryTheory.CommaMorphism.w
IsClosedImmersion.of_comp
IsProper.toIsSeparated
IsProper.of_comp
CategoryTheory.Over.OverMorphism.ext
Set.image_subset_iff
Set.diff_eq_empty
Set.not_nonempty_iff_eq_empty
nonempty_inter_closedPoints
Set.diff_eq_compl_inter
Set.image_singleton
IsLocallyClosed.inter
IsOpen.isLocallyClosed
IsClosed.isOpen_compl
IsClosed.preimage
Scheme.Hom.continuous
Scheme.Hom.isClosedMap
IsProper.toUniversallyClosed
IsProper.instOfIsFinite
IsFinite.instOfIsClosedImmersion
IsClosed.isLocallyClosed
Equiv.surjective
ext_of_apply_closedPoint_eq
CategoryTheory.Category.assoc
Field.instIsLocalRing
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Over.whiskerRight_left_fst
CategoryTheory.Limits.limit.lift_π_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Over.whiskerRight_left_snd
CategoryTheory.CartesianMonoidalCategory.hom_ext
CategoryTheory.CartesianMonoidalCategory.comp_lift
CategoryTheory.CartesianMonoidalCategory.whiskerRight_fst
CategoryTheory.GrpObj.η_whiskerRight_commutator
CategoryTheory.CartesianMonoidalCategory.lift_fst_assoc
CategoryTheory.SemiCartesianMonoidalCategory.comp_toUnit_assoc
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unit
CategoryTheory.CartesianMonoidalCategory.lift_fst
CategoryTheory.CartesianMonoidalCategory.lift_snd
exists_finite_imageι_comp_morphismRestrict_of_finite_image_preimage
CategoryTheory.Limits.pullback.lift_fst
Set.Finite.subset
Set.finite_singleton
Set.Finite.image
Scheme.Hom.finite_preimage_singleton
instLocallyQuasiFiniteOfIsFinite
instQuasiCompactMorphismRestrict
quasiCompact_comp
Scheme.IdealSheafData.instQuasiCompactSubschemeι
instQuasiCompactOfUniversallyClosed
Set.ext
Set.preimage_comp
TopCat.coe_comp
Scheme.Hom.comp_base
morphismRestrict_ι
Set.image_preimage_eq_inter_range
Set.range_comp
Scheme.Opens.range_ι
Scheme.IdealSheafData.range_subschemeι
Scheme.Hom.support_ker
Set.inter_assoc
Set.preimage_inter
Set.singleton_inter_of_mem
IsClosed.closure_eq
IsClosedMap.isClosed_range
subset_refl
Set.instReflSubset
ext_of_apply_eq
isReduced_of_isIntegral
TopologicalSpace.Opens.isOpen
IsOpen.dense
IrreducibleSpace.toPreirreducibleSpace
irreducibleSpace_of_isIntegral
Set.Nonempty.preimage
Scheme.Hom.surjective
Set.image_congr
pointOfClosedPoint_comp
subsingleton_image_closure_of_finite_of_isPreirreducible
CategoryTheory.Over.tensorHom_left
Set.image_univ
Scheme.Pullback.range_map
IsOpenImmersion.mono
IsOpenImmersion.of_isIso
CategoryTheory.IsIso.id
pointOfClosedPoint_apply
Set.Nonempty.image_const
range_eq_univ
Set.range_id
Set.inter_univ
IsIrreducible.isPreirreducible
IsIrreducible.image
IrreducibleSpace.isIrreducible_univ
Continuous.continuousOn
Set.preimage_range
subset_closure
CategoryTheory.Over.whiskerLeft_left_fst
CategoryTheory.Over.rightUnitor_inv_left_fst
CategoryTheory.Category.comp_id
CategoryTheory.CommaMorphism.ext
CategoryTheory.Over.tensorObj_ext
CategoryTheory.CartesianMonoidalCategory.whiskerLeft_fst
CategoryTheory.CartesianMonoidalCategory.rightUnitor_inv_fst
CategoryTheory.GrpObj.whiskerLeft_η_commutator
CategoryTheory.Limits.pullback.lift.congr_simp
CategoryTheory.Over.whiskerLeft_left_snd
CategoryTheory.Over.rightUnitor_inv_left_snd_assoc
---
← Back to Index