Documentation Verification Report

Smooth

📁 Source: Mathlib/AlgebraicGeometry/Group/Smooth.lean

Statistics

MetricCount
Definitions0
Theoremssmooth_of_grpObj_of_isAlgClosed
1
Total1

AlgebraicGeometry

Theorems

NameKindAssumesProvesValidatesDepends On
smooth_of_grpObj_of_isAlgClosed 📖mathematicalSmooth
Spec
CommRingCat.of
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LocallyOfFiniteType.jacobsonSpace
instLocallyOfFiniteTypeOfLocallyOfFinitePresentation
instJacobsonSpaceCarrierCarrierCommRingCatSpecOfOfIsJacobsonRing
instIsJacobsonRingOfKrullDimLEOfNatNat
PrimeSpectrum.instKrullDimLEOfNatNat
isArtinian_of_fg_of_artinian'
DivisionRing.instIsArtinianRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
Field.instIsLocalRing
Scheme.Hom.smoothLocus_eq_top_iff
TopologicalSpace.Opens.coe_eq_univ
not_ne_iff
Set.nonempty_compl
nonempty_inter_closedPoints
IsClosed.isLocallyClosed
IsOpen.isClosed_compl
TopologicalSpace.Opens.is_open'
Dense.nonempty
Scheme.Hom.dense_smoothLocus_of_perfectField
IsAlgClosed.perfectField
IsOpen.isLocallyClosed
CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_comp_inv
CategoryTheory.CartesianMonoidalCategory.comp_lift_assoc
CategoryTheory.Category.comp_id
CategoryTheory.SemiCartesianMonoidalCategory.comp_toUnit_assoc
CategoryTheory.SemiCartesianMonoidalCategory.toUnit_unit
CategoryTheory.Category.id_comp
CategoryTheory.GrpObj.lift_comp_inv_right
pointOfClosedPoint_apply
CategoryTheory.CommaMorphism.w
locallyOfFinitePresentation_comp
locallyOfFinitePresentation_of_isOpenImmersion
IsOpenImmersion.of_isIso
CategoryTheory.Comma.instIsIsoLeft
CategoryTheory.Iso.isIso_hom
Mathlib.Tactic.DepRewrite.nddcongrArg
Scheme.Hom.preimage_smoothLocus_eq
Scheme.Hom.mem_preimage

---

← Back to Index