Documentation Verification Report

Limits

📁 Source: Mathlib/AlgebraicGeometry/Limits.lean

Statistics

MetricCount
DefinitionscoprodPresheafObjIso, emptyTo, hom_unique_of_empty_source, coprodIsoSigma, coprodMk, coprodOpenCover, coprodSpec, emptyIsInitial, instBraidedCategoryScheme, instCartesianMonoidalCategoryScheme, instCreatesColimitsOfShapeSchemeLocallyRingedSpaceDiscreteForgetToLocallyRingedSpaceOfSmall, instOverTerminalScheme, isInitialOfIsEmpty, sigmaMk, sigmaOpenCover, sigmaSpec, specPUnitIsInitial, specPunitIsInitial, specULiftZIsTerminal, specZIsTerminal
20
TheoremsbiSup_of_disjoint, iSup_of_disjoint, of_subsingleton, sup_of_disjoint, coprodPresheafObjIso_hom_fst, coprodPresheafObjIso_hom_fst_assoc, coprodPresheafObjIso_hom_snd, coprodPresheafObjIso_hom_snd_assoc, emptyTo_base, emptyTo_c_app, empty_ext, empty_ext_iff, eq_emptyTo, isAffine_of_isLimit, coprodMk_inl, coprodMk_inr, coprodSpec_apply, coprodSpec_coprodMk, coprodSpec_inl, coprodSpec_inl_assoc, coprodSpec_inr, coprodSpec_inr_assoc, disjoint_opensRange_sigmaι, emptyIsInitial_to, initial_isEmpty, inl_ne_inr, inr_ne_inl, instCoproductsOfShapeDisjointSchemeOfSmall, instFinitaryExtensiveScheme, instHasColimitsOfShapeDiscreteSchemeOfSmall, instHasFiniteCoproductsScheme, instHasFiniteLimitsScheme, instHasInitialScheme, instHasStrictInitialObjectsScheme, instHasTerminalScheme, instIsAffineCoprodScheme, instIsAffineOfFiniteOfDiscreteTopologyCarrierCarrierCommRingCat, instIsAffineOfSubsingletonCarrierCarrierCommRingCat, instIsAffineSigmaObjScheme, instIsAffineTerminalScheme, instIsEmptyCarrierCarrierCommRingCatEmptyCollectionScheme, instIsIsoSchemeCoprodComparisonOppositeCommRingCatSpec, instIsIsoSchemeCoprodSpec, instIsIsoSchemeSigmaSpecOfFinite, instIsOpenImmersionInlScheme, instIsOpenImmersionInrScheme, instIsOpenImmersionMapOfHomForallEvalRingHom, instIsOpenImmersionMapWalkingSpanSchemeSpan, instIsOpenImmersionSigmaSpec, instIsOverTerminalScheme, instMonoCoprodScheme, instMonoObjWalkingSpanCompSchemeSpanForgetNoneWalkingPairSomeMapInitOfIsOpenImmersion, instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscretePEmptySpec, instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscreteSpecOfFinite, instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscreteWalkingPairSpec, instPreservesColimitsOfShapeSchemeTopCatDiscreteForgetToTopOfSmall, instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensOfIsEmpty, instSubsingletonOverTerminalScheme, isAffineOpen_bot, isAffine_of_isEmpty, isCompl_opensRange_inl_inr, isCompl_range_inl_inr, isEmpty_of_commSq_sigmaι_of_ne, isEmpty_pullback_sigmaι_of_ne, isInitial_iff_isEmpty, isIso_of_isEmpty, isIso_stalkMap_coprodSpec, isOpenImmersion_of_isEmpty, isOpenImmersion_sigmaDesc, isPullback_inl_inl_coprodMap, isPullback_inr_inr_coprodMap, nonempty_isColimit_binaryCofanMk_of_isCompl, nonempty_isColimit_cofanMk_of, sigmaMk_mk, sigmaOpenCover_I₀, sigmaOpenCover_X, sigmaOpenCover_f, sigmaι_eq_iff, spec_punit_isEmpty, ι_left_coprodIsoSigma_inv, ι_right_coprodIsoSigma_inv, ι_sigmaSpec, ι_sigmaSpec_assoc
83
Total103

AlgebraicGeometry

Definitions

NameCategoryTheorems
coprodIsoSigma 📖CompOp
2 mathmath: ι_right_coprodIsoSigma_inv, ι_left_coprodIsoSigma_inv
coprodMk 📖CompOp
4 mathmath: coprodSpec_apply, coprodMk_inl, coprodSpec_coprodMk, coprodMk_inr
coprodOpenCover 📖CompOp
coprodSpec 📖CompOp
8 mathmath: coprodSpec_apply, coprodSpec_inr, isIso_stalkMap_coprodSpec, coprodSpec_coprodMk, coprodSpec_inr_assoc, coprodSpec_inl_assoc, coprodSpec_inl, instIsIsoSchemeCoprodSpec
emptyIsInitial 📖CompOp
1 mathmath: emptyIsInitial_to
instBraidedCategoryScheme 📖CompOp
instCartesianMonoidalCategoryScheme 📖CompOp
5 mathmath: instQuasiCompactLiftSchemeIdOfQuasiSeparatedSpaceCarrierCarrierCommRingCat, Scheme.isSeparated_iff_isClosedImmersion_prod_lift, IsImmersion.instLiftSchemeId, Scheme.instIsClosedImmersionLiftIdOfIsSeparated, quasiSeparatedSpace_iff_quasiCompact_prod_lift
instCreatesColimitsOfShapeSchemeLocallyRingedSpaceDiscreteForgetToLocallyRingedSpaceOfSmall 📖CompOp
instOverTerminalScheme 📖CompOp
isInitialOfIsEmpty 📖CompOp
sigmaMk 📖CompOp
1 mathmath: sigmaMk_mk
sigmaOpenCover 📖CompOp
3 mathmath: sigmaOpenCover_X, sigmaOpenCover_I₀, sigmaOpenCover_f
sigmaSpec 📖CompOp
4 mathmath: ι_sigmaSpec, instIsIsoSchemeSigmaSpecOfFinite, instIsOpenImmersionSigmaSpec, ι_sigmaSpec_assoc
specPUnitIsInitial 📖CompOp
specPunitIsInitial 📖CompOp
specULiftZIsTerminal 📖CompOp
specZIsTerminal 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coprodMk_inl 📖mathematicalDFunLike.coe
Homeomorph
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
instTopologicalSpaceSum
SheafedSpace.instTopologicalSpaceCarrierCarrier
EquivLike.toFunLike
Homeomorph.instEquivLike
coprodMk
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Limits.coprod.inl
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.FinitaryExtensive.hasFiniteCoproducts
CategoryTheory.finitaryExtensive_TopCat
Finite.of_fintype
CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv_assoc
CategoryTheory.Limits.coprodComparison_inl
coprodMk_inr 📖mathematicalDFunLike.coe
Homeomorph
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
instTopologicalSpaceSum
SheafedSpace.instTopologicalSpaceCarrierCarrier
EquivLike.toFunLike
Homeomorph.instEquivLike
coprodMk
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Limits.coprod.inr
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.FinitaryExtensive.hasFiniteCoproducts
CategoryTheory.finitaryExtensive_TopCat
Finite.of_fintype
CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv_assoc
CategoryTheory.Limits.coprodComparison_inr
coprodSpec_apply 📖mathematicalDFunLike.coe
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Spec
CommRingCat.of
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
Prod.instCommRing
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
coprodSpec
Equiv
PrimeSpectrum
CommRing.toCommSemiring
Prod.instCommSemiring
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
PrimeSpectrum.primeSpectrumProd
Homeomorph
SheafedSpace.instTopologicalSpaceCarrierCarrier
instTopologicalSpaceSum
Homeomorph.instEquivLike
Homeomorph.symm
coprodMk
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
coprodSpec_coprodMk
Homeomorph.apply_symm_apply
coprodSpec_coprodMk 📖mathematicalDFunLike.coe
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Spec
CommRingCat.of
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
Prod.instCommRing
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
coprodSpec
Homeomorph
instTopologicalSpaceSum
SheafedSpace.instTopologicalSpaceCarrierCarrier
EquivLike.toFunLike
Homeomorph.instEquivLike
coprodMk
Equiv
PrimeSpectrum
CommRing.toCommSemiring
Prod.instCommSemiring
Equiv.instEquivLike
Equiv.symm
PrimeSpectrum.primeSpectrumProd
PrimeSpectrum.ext
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
coprodMk_inl
CategoryTheory.Limits.coprod.inl_desc
Ideal.ext
RingHom.instRingHomClass
Ideal.comap_top
inf_of_le_left
coprodMk_inr
CategoryTheory.Limits.coprod.inr_desc
inf_of_le_right
coprodSpec_inl 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Spec
CommRingCat.of
CategoryTheory.Limits.coprod
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
Prod.instCommRing
CategoryTheory.Limits.coprod.inl
coprodSpec
Spec.map
CommRingCat.ofHom
RingHom.fst
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Limits.coprod.inl_desc
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
coprodSpec_inl_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Spec
CommRingCat.of
CategoryTheory.Limits.coprod
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.coprod.inl
Prod.instCommRing
coprodSpec
Spec.map
CommRingCat.ofHom
RingHom.fst
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coprodSpec_inl
coprodSpec_inr 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Spec
CommRingCat.of
CategoryTheory.Limits.coprod
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
Prod.instCommRing
CategoryTheory.Limits.coprod.inr
coprodSpec
Spec.map
CommRingCat.ofHom
RingHom.snd
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Limits.coprod.inr_desc
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
coprodSpec_inr_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Spec
CommRingCat.of
CategoryTheory.Limits.coprod
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.coprod.inr
Prod.instCommRing
coprodSpec
Spec.map
CommRingCat.ofHom
RingHom.snd
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coprodSpec_inr
disjoint_opensRange_sigmaι 📖mathematicalDisjoint
Scheme.Opens
CategoryTheory.Limits.sigmaObj
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
Scheme.Hom.opensRange
CategoryTheory.Limits.Sigma.ι
Scheme.IsLocallyDirected.instIsOpenImmersionι
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
Scheme.IsLocallyDirected.instIsOpenImmersionι
sigmaι_eq_iff
emptyIsInitial_to 📖mathematicalCategoryTheory.Limits.IsInitial.to
Scheme
Scheme.instCategory
Scheme.instEmptyCollection
emptyIsInitial
Scheme.emptyTo
initial_isEmpty 📖mathematicalIsEmpty
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.initial
Scheme
Scheme.instCategory
instHasInitialScheme
instHasInitialScheme
inl_ne_inr 📖Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
Set.disjoint_iff_forall_ne
IsCompl.disjoint
isCompl_range_inl_inr
inr_ne_inl 📖Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
inl_ne_inr
instCoproductsOfShapeDisjointSchemeOfSmall 📖mathematicalCategoryTheory.Limits.CoproductsOfShapeDisjoint
Scheme
Scheme.instCategory
CategoryTheory.Limits.CoproductDisjoint.of_hasCoproduct
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
IsOpenImmersion.mono
Scheme.IsLocallyDirected.instIsOpenImmersionι
Scheme.Pullback.instHasPullback
isInitial_iff_isEmpty
isEmpty_pullback_sigmaι_of_ne
instFinitaryExtensiveScheme 📖mathematicalCategoryTheory.FinitaryExtensive
Scheme
Scheme.instCategory
instHasColimitsOfShapeDiscreteSchemeOfSmall
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.HasPullbacksOfInclusions.instOfHasPullbacks
CategoryTheory.Limits.hasColimitsOfShape_discrete
Finite.of_fintype
Scheme.Pullback.instHasPullbacks
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
Scheme.Pullback.instHasPullback
CategoryTheory.Limits.pullback.condition
CategoryTheory.IsPullback.flip
IsOpenImmersion.isPullback
instIsOpenImmersionInlScheme
TopologicalSpace.Opens.ext
Set.ext
Homeomorph.surjective
coprodMk_inl
coprodMk_inr
instIsOpenImmersionInrScheme
nonempty_isColimit_binaryCofanMk_of_isCompl
IsOpenImmersion.instFstScheme
IsOpenImmersion.hasPullback_of_right
Scheme.Hom.opensRange_pullbackFst
IsCompl.map
CoheytingHomClass.toBoundedLatticeHomClass
BiheytingHomClass.toCoheytingHomClass
BoundedLatticeHomClass.toBiheytingHomClass
CompleteLatticeHomClass.toBoundedLatticeHomClass
CompleteLatticeHom.instCompleteLatticeHomClass
isCompl_range_inl_inr
CategoryTheory.IsVanKampenColimit.of_iso
instHasColimitsOfShapeDiscreteSchemeOfSmall 📖mathematicalCategoryTheory.Limits.HasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Scheme
Scheme.instCategory
CategoryTheory.hasColimit_of_created
CategoryTheory.Limits.instHasColimitCompOfPreservesColimit
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
Scheme.IsLocallyDirected.instPreservesColimitLocallyRingedSpaceForgetToLocallyRingedSpace
instHasFiniteCoproductsScheme 📖mathematicalCategoryTheory.Limits.HasFiniteCoproducts
Scheme
Scheme.instCategory
instHasColimitsOfShapeDiscreteSchemeOfSmall
UnivLE.small
univLE_of_max
UnivLE.self
instHasFiniteLimitsScheme 📖mathematicalCategoryTheory.Limits.HasFiniteLimits
Scheme
Scheme.instCategory
CategoryTheory.Limits.hasFiniteLimits_of_hasTerminal_and_pullbacks
instHasTerminalScheme
Scheme.Pullback.instHasPullbacks
instHasInitialScheme 📖mathematicalCategoryTheory.Limits.HasInitial
Scheme
Scheme.instCategory
CategoryTheory.Limits.hasInitial_of_unique
Unique.instSubsingleton
instHasStrictInitialObjectsScheme 📖mathematicalCategoryTheory.Limits.HasStrictInitialObjects
Scheme
Scheme.instCategory
CategoryTheory.Limits.hasStrictInitialObjects_of_initial_is_strict
instHasInitialScheme
isIso_of_isEmpty
initial_isEmpty
instHasTerminalScheme 📖mathematicalCategoryTheory.Limits.HasTerminal
Scheme
Scheme.instCategory
CategoryTheory.Limits.hasTerminal_of_hasTerminal_of_preservesLimit
CategoryTheory.Limits.hasTerminal_op_of_hasInitial
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
Finite.of_fintype
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.instIsRightAdjointOfMonadicRightAdjoint
instIsAffineCoprodScheme 📖mathematicalIsAffine
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
IsAffine.of_isIso
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
instIsIsoSchemeCoprodSpec
isAffine_Spec
instIsAffineOfFiniteOfDiscreteTopologyCarrierCarrierCommRingCat 📖mathematicalIsAffineisOpen_discrete
IsAffineOpen.iSup_of_disjoint
IsAffineOpen.of_subsingleton
Set.subsingleton_singleton
TopologicalSpace.Opens.ext
Set.ext
isOpen_iUnion
IsAffine.of_isIso
CategoryTheory.Iso.isIso_inv
instIsAffineOfSubsingletonCarrierCarrierCommRingCat 📖mathematicalIsAffineisEmpty_or_nonempty
isAffine_of_isEmpty
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
Scheme.isBasis_affineOpens
isOpen_univ
IsAffine.of_isIso
CategoryTheory.Iso.isIso_inv
TopologicalSpace.Opens.ext
Set.ext
instIsAffineSigmaObjScheme 📖mathematicalIsAffineCategoryTheory.Limits.sigmaObj
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
Countable.toSmall
Finite.to_countable
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
Countable.toSmall
Finite.to_countable
Small.equiv_small
Equiv.finite_iff
IsAffine.of_isIso
UnivLE.small
UnivLE.self
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
instHasColimitsOfShapeDiscreteSchemeOfSmall
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.isIso_hom
instIsIsoSchemeSigmaSpecOfFinite
isAffine_Spec
instIsAffineTerminalScheme 📖mathematicalIsAffine
CategoryTheory.Limits.terminal
Scheme
Scheme.instCategory
instHasTerminalScheme
IsAffine.of_isIso
instHasTerminalScheme
CategoryTheory.Limits.hasTerminal_op_of_hasInitial
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
Finite.of_fintype
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.instIsRightAdjointOfMonadicRightAdjoint
CategoryTheory.Iso.isIso_inv
instIsAffineObjOppositeCommRingCatSchemeSpec
instIsEmptyCarrierCarrierCommRingCatEmptyCollectionScheme 📖mathematicalIsEmpty
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Scheme
Scheme.instEmptyCollection
PEmpty.instIsEmpty
instIsIsoSchemeCoprodComparisonOppositeCommRingCatSpec 📖mathematicalCategoryTheory.IsIso
Scheme
Scheme.instCategory
CategoryTheory.Limits.coprod
CategoryTheory.Functor.obj
Opposite
CommRingCat
CategoryTheory.Category.opposite
CommRingCat.instCategory
Scheme.Spec
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasCoproducts_opposite
CommRingCat.hasLimitsOfShape
CategoryTheory.Limits.coprodComparison
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasCoproducts_opposite
CommRingCat.hasLimitsOfShape
CategoryTheory.Limits.instHasBinaryCoproductOppositeOp
CommRingCat.hasLimit
small_subtype
small_Pi
CategoryTheory.Limits.coprod.hom_ext
CategoryTheory.Limits.coprodComparison_inl_assoc
coprodSpec.eq_1
CategoryTheory.Limits.coprod.inl_desc
Scheme.Spec_map
Spec.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.unop_inv
CategoryTheory.Limits.opProdIsoCoprod_inv_inl
CategoryTheory.Limits.limit.isoLimitCone_inv_π
CategoryTheory.Limits.coprodComparison_inr_assoc
CategoryTheory.Limits.coprod.inr_desc
CategoryTheory.Limits.opProdIsoCoprod_inv_inr
instIsIsoSchemeMapOfCommRingCat
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.eq_comp_inv
instIsIsoSchemeCoprodSpec
CategoryTheory.IsIso.inv_isIso
instIsIsoSchemeCoprodSpec 📖mathematicalCategoryTheory.IsIso
Scheme
Scheme.instCategory
CategoryTheory.Limits.coprod
Spec
CommRingCat.of
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
Prod.instCommRing
coprodSpec
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CommRingCat.Colimits.hasColimits_commRingCat
isIso_iff_isIso_stalkMap
TopCat.ext
coprodSpec_apply
CategoryTheory.Iso.isIso_inv
isIso_stalkMap_coprodSpec
instIsIsoSchemeSigmaSpecOfFinite 📖mathematicalCategoryTheory.IsIso
Scheme
Scheme.instCategory
CategoryTheory.Limits.sigmaObj
Spec
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CommRingCat.of
Pi.commRing
CommRingCat.carrier
CommRingCat.commRing
sigmaSpec
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscreteSpecOfFinite
CategoryTheory.Limits.Sigma.hom_ext
ι_sigmaSpec
CategoryTheory.Limits.colimit.isoColimitCocone_ι_hom
CategoryTheory.Category.id_comp
CategoryTheory.Iso.isIso_hom
instIsOpenImmersionInlScheme 📖mathematicalIsOpenImmersion
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.coprod.inl
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
small_ulift
ι_left_coprodIsoSigma_inv
IsOpenImmersion.comp
Scheme.IsLocallyDirected.instIsOpenImmersionι
CategoryTheory.Iso.isIso_inv
instIsOpenImmersionInrScheme 📖mathematicalIsOpenImmersion
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.coprod.inr
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
small_ulift
ι_right_coprodIsoSigma_inv
IsOpenImmersion.comp
Scheme.IsLocallyDirected.instIsOpenImmersionι
CategoryTheory.Iso.isIso_inv
instIsOpenImmersionMapOfHomForallEvalRingHom 📖mathematicalIsOpenImmersion
Spec
CommRingCat.of
Pi.commRing
Spec.map
CommRingCat.ofHom
Pi.evalRingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
IsLocalization.away_of_isIdempotentElem_of_mul
Function.update_self
mul_one
Function.update_of_ne
MulZeroClass.mul_zero
one_mul
MulZeroClass.zero_mul
Function.surjective_eval
AddTorsor.nonempty
IsOpenImmersion.of_isLocalization
instIsOpenImmersionMapWalkingSpanSchemeSpan 📖mathematicalIsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
Scheme
Scheme.instCategory
CategoryTheory.Limits.span
CategoryTheory.Functor.map
CategoryTheory.Functor.map_id
IsOpenImmersion.of_isIso
CategoryTheory.IsIso.id
instIsOpenImmersionSigmaSpec 📖mathematicalIsOpenImmersion
CategoryTheory.Limits.sigmaObj
Scheme
Scheme.instCategory
Spec
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CommRingCat.of
Pi.commRing
CommRingCat.carrier
CommRingCat.commRing
sigmaSpec
isOpenImmersion_sigmaDesc
UnivLE.small
UnivLE.self
instIsOpenImmersionMapOfHomForallEvalRingHom
Set.disjoint_iff_forall_ne
Eq.le
PrimeSpectrum.ext_iff
DFinsupp.single_apply
AddSubmonoidClass.toZeroMemClass
Submodule.addSubmonoidClass
Ideal.IsPrime.ne_top
PrimeSpectrum.isPrime
instIsOverTerminalScheme 📖mathematicalScheme.Hom.IsOver
CategoryTheory.Limits.terminal
Scheme
Scheme.instCategory
instHasTerminalScheme
instHasTerminalScheme
Unique.instSubsingleton
instMonoCoprodScheme 📖mathematicalCategoryTheory.Limits.MonoCoprod
Scheme
Scheme.instCategory
CategoryTheory.Limits.MonoCoprod.mk'
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
IsOpenImmersion.mono
Scheme.IsLocallyDirected.instIsOpenImmersionι
instMonoObjWalkingSpanCompSchemeSpanForgetNoneWalkingPairSomeMapInitOfIsOpenImmersion 📖mathematicalCategoryTheory.Mono
CategoryTheory.types
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Functor.comp
Scheme
Scheme.instCategory
CategoryTheory.Limits.span
Scheme.forget
CategoryTheory.Functor.map
CategoryTheory.Limits.WidePushoutShape.Hom.init
CategoryTheory.mono_iff_injective
Topology.IsEmbedding.injective
Topology.IsOpenEmbedding.toIsEmbedding
Scheme.Hom.isOpenEmbedding
instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscretePEmptySpec 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
Opposite
CommRingCat
CategoryTheory.Category.opposite
CommRingCat.instCategory
Scheme
Scheme.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Scheme.Spec
CategoryTheory.Limits.hasInitial_op_of_hasTerminal
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
CommRingCat.hasLimits
Finite.of_fintype
Function.isEmpty
spec_punit_isEmpty
CategoryTheory.Limits.preservesInitial_of_iso
instHasInitialScheme
isIso_of_isEmpty
CategoryTheory.Limits.preservesColimitsOfShape_pempty_of_preservesInitial
instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscreteSpecOfFinite 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
Opposite
CommRingCat
CategoryTheory.Category.opposite
CommRingCat.instCategory
Scheme
Scheme.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Scheme.Spec
CategoryTheory.preservesFiniteCoproductsOfPreservesBinaryAndInitial
instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscreteWalkingPairSpec
instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscretePEmptySpec
CategoryTheory.Limits.hasFiniteCoproducts_opposite
CategoryTheory.Limits.hasFiniteProducts_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
CommRingCat.hasLimits
instPreservesColimitsOfShapeOppositeCommRingCatSchemeDiscreteWalkingPairSpec 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
Opposite
CommRingCat
CategoryTheory.Category.opposite
CommRingCat.instCategory
Scheme
Scheme.instCategory
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
Scheme.Spec
CategoryTheory.Limits.PreservesColimitPair.of_iso_coprod_comparison
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasCoproducts_opposite
CommRingCat.hasLimitsOfShape
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
instIsIsoSchemeCoprodComparisonOppositeCommRingCatSpec
CategoryTheory.Limits.preservesColimit_of_iso_diagram
instPreservesColimitsOfShapeSchemeTopCatDiscreteForgetToTopOfSmall 📖mathematicalCategoryTheory.Limits.PreservesColimitsOfShape
Scheme
Scheme.instCategory
TopCat
TopCat.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Scheme.forgetToTop
CategoryTheory.Limits.comp_preservesColimitsOfShape
CategoryTheory.preservesColimitOfShape_of_createsColimitsOfShape_and_hasColimitsOfShape
LocallyRingedSpace.instHasColimitsOfShapeDiscrete
LocallyRingedSpace.instPreservesColimitsOfShapeSheafedSpaceCommRingCatDiscreteForgetToSheafedSpace
SheafedSpace.instPreservesColimitsOfShapeTopCatForgetOfSmallOfHasLimitsOfShapeOpposite
CategoryTheory.instSmallDiscrete
CommRingCat.hasLimitsOfShape
Opposite.small
instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensOfIsEmpty 📖mathematicalCommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
Scheme.instSubsingletonCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensBot
Unique.instSubsingleton
instSubsingletonOverTerminalScheme 📖mathematicalScheme.Over
CategoryTheory.Limits.terminal
Scheme
Scheme.instCategory
instHasTerminalScheme
instHasTerminalScheme
Unique.instSubsingleton
isAffineOpen_bot 📖mathematicalIsAffineOpen
Bot.bot
Scheme.Opens
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
HeytingAlgebra.toOrderBot
isAffine_of_isEmpty
Set.instIsEmptyElemEmptyCollection
isAffine_of_isEmpty 📖mathematicalIsAffineIsAffine.of_isIso
isIso_of_isEmpty
CategoryTheory.IsIso.comp_isIso
CategoryTheory.IsIso.inv_isIso
spec_punit_isEmpty
isAffine_Spec
isCompl_opensRange_inl_inr 📖mathematicalIsCompl
Scheme.Opens
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CompleteLattice.toBoundedOrder
TopologicalSpace.Opens.instCompleteLattice
Scheme.Hom.opensRange
CategoryTheory.Limits.coprod.inl
instIsOpenImmersionInlScheme
CategoryTheory.Limits.coprod.inr
instIsOpenImmersionInrScheme
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
instIsOpenImmersionInlScheme
instIsOpenImmersionInrScheme
isCompl_range_inl_inr
isCompl_range_inl_inr 📖mathematicalIsCompl
Set
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instBoundedOrder
Set.range
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.coprod.inr
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
TopCat.binaryCofan_isColimit_iff
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
instPreservesColimitsOfShapeSchemeTopCatDiscreteForgetToTopOfSmall
isEmpty_of_commSq_sigmaι_of_ne 📖mathematicalCategoryTheory.CommSq
Scheme
Scheme.instCategory
CategoryTheory.Limits.sigmaObj
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
CategoryTheory.Limits.Sigma.ι
IsEmpty
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
Scheme.IsLocallyDirected.instIsOpenImmersionι
eq_bot_iff
disjoint_iff
disjoint_opensRange_sigmaι
Scheme.Hom.comp_apply
CategoryTheory.CommSq.w
isEmpty_pullback_sigmaι_of_ne 📖mathematicalIsEmpty
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.pullback
Scheme
Scheme.instCategory
CategoryTheory.Limits.sigmaObj
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
CategoryTheory.Limits.Sigma.ι
Scheme.Pullback.instHasPullback
isEmpty_of_commSq_sigmaι_of_ne
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
Scheme.Pullback.instHasPullback
CategoryTheory.Limits.pullback.condition
isInitial_iff_isEmpty 📖mathematicalCategoryTheory.Limits.IsInitial
Scheme
Scheme.instCategory
IsEmpty
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Equiv.isEmpty
CategoryTheory.Iso.isIso_hom
spec_punit_isEmpty
isIso_of_isEmpty 📖mathematicalCategoryTheory.IsIso
Scheme
Scheme.instCategory
TopCat.epi_iff_surjective
IsOpenImmersion.isIso
isOpenImmersion_of_isEmpty
Function.isEmpty
isIso_stalkMap_coprodSpec 📖mathematicalCategoryTheory.IsIso
CommRingCat
CommRingCat.instCategory
TopCat.Presheaf.stalk
CommRingCat.Colimits.hasColimits_commRingCat
PresheafedSpace.carrier
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Spec
CommRingCat.of
Prod.instCommRing
PresheafedSpace.presheaf
DFunLike.coe
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
coprodSpec
Scheme.Hom.stalkMap
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CommRingCat.Colimits.hasColimits_commRingCat
Homeomorph.surjective
Scheme.Hom.stalkMap_comp
coprodMk_inl
Inseparable.of_eq
coprodSpec_inl
IsOpenImmersion.instIsIsoCommRingCatStalkMap
instIsOpenImmersionInlScheme
Scheme.Hom.stalkMap_congr_hom
CategoryTheory.IsIso.comp_inv_eq
IsOpenImmersion.of_isLocalization
IsLocalization.away_fst
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsIso.inv_isIso
coprodMk_inr
coprodSpec_inr
instIsOpenImmersionInrScheme
IsLocalization.away_snd
isOpenImmersion_of_isEmpty 📖mathematicalIsOpenImmersionIsOpenImmersion.of_isIso_stalkMap
Topology.IsOpenEmbedding.of_isEmpty
CommRingCat.Colimits.hasColimits_commRingCat
isOpenImmersion_sigmaDesc 📖mathematicalIsOpenImmersion
Pairwise
Function.onFun
Set
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.range
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Limits.sigmaObj
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
CategoryTheory.Limits.Sigma.desc
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
Small.equiv_small
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Sigma.hom_ext
Equiv.surjective
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Limits.Sigma.ι_reindex_inv_assoc
IsOpenImmersion.comp
CategoryTheory.Iso.isIso_inv
Equiv.injective
isPullback_inl_inl_coprodMap 📖mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
CategoryTheory.Limits.coprod
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.coprod.map
IsOpenImmersion.isPullback
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
instIsOpenImmersionInlScheme
CategoryTheory.Limits.coprod.inl_map
le_antisymm
Homeomorph.surjective
SetLike.mem_coe
coprodMk_inl
Set.disjoint_iff_forall_ne
IsCompl.disjoint
isCompl_range_inl_inr
coprodMk_inr
CategoryTheory.Limits.coprod.inr_map
isPullback_inr_inr_coprodMap 📖mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
CategoryTheory.Limits.coprod
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.coprod.inr
CategoryTheory.Limits.coprod.map
CategoryTheory.IsPullback.of_iso
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
isPullback_inl_inl_coprodMap
instHasColimitsOfShapeDiscreteSchemeOfSmall
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Limits.coprod.map_desc
CategoryTheory.Limits.coprod.desc_comp
CategoryTheory.Limits.coprod.inr_map
CategoryTheory.Limits.coprod.inl_map
nonempty_isColimit_binaryCofanMk_of_isCompl 📖mathematicalIsCompl
Scheme.Opens
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CompleteLattice.toBoundedOrder
TopologicalSpace.Opens.instCompleteLattice
Scheme.Hom.opensRange
CategoryTheory.Limits.IsColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
Scheme
Scheme.instCategory
CategoryTheory.Limits.pair
nonempty_isColimit_cofanMk_of
UnivLE.small
univLE_of_max
UnivLE.self
Equiv.iSup_comp
iSup_bool_eq
IsCompl.codisjoint
IsCompl.disjoint
Disjoint.symm
nonempty_isColimit_cofanMk_of 📖mathematicalIsOpenImmersion
iSup
Scheme.Opens
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
Scheme.Hom.opensRange
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Pairwise
Function.onFun
Disjoint
TopologicalSpace.Opens.instPartialOrder
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
CategoryTheory.Limits.IsColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
Scheme
Scheme.instCategory
CategoryTheory.Discrete.functor
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
isOpenImmersion_sigmaDesc
CategoryTheory.Limits.Cofan.nonempty_isColimit_iff_isIso_sigmaDesc
isIso_of_isOpenImmersion_of_opensRange_eq_top
eq_top_iff
isOpen_iUnion
TopologicalSpace.Opens.is_open'
CategoryTheory.Limits.colimit.ι_desc
sigmaMk_mk 📖mathematicalDFunLike.coe
Homeomorph
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.sigmaObj
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
instTopologicalSpaceSigma
SheafedSpace.instTopologicalSpaceCarrierCarrier
EquivLike.toFunLike
Homeomorph.instEquivLike
sigmaMk
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Limits.Sigma.ι
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
TopCat.topCat_hasColimitsOfShape
univLE_of_max
CategoryTheory.Limits.colimit.isoColimitCocone_ι_inv_assoc
CategoryTheory.Limits.ι_comp_sigmaComparison
sigmaOpenCover_I₀ 📖mathematicalCategoryTheory.PreZeroHypercover.I₀
Scheme
Scheme.instCategory
CategoryTheory.Limits.sigmaObj
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
Scheme.precoverage
IsOpenImmersion
sigmaOpenCover
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
sigmaOpenCover_X 📖mathematicalCategoryTheory.PreZeroHypercover.X
Scheme
Scheme.instCategory
CategoryTheory.Limits.sigmaObj
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
Scheme.precoverage
IsOpenImmersion
sigmaOpenCover
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
sigmaOpenCover_f 📖mathematicalCategoryTheory.PreZeroHypercover.f
Scheme
Scheme.instCategory
CategoryTheory.Limits.sigmaObj
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
Scheme.precoverage
IsOpenImmersion
sigmaOpenCover
CategoryTheory.Limits.Sigma.ι
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
sigmaι_eq_iff 📖mathematicalDFunLike.coe
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
CategoryTheory.Limits.sigmaObj
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
CategoryTheory.Limits.Sigma.ι
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
Scheme.IsLocallyDirected.ι_eq_ι_iff
CategoryTheory.Discrete.functor_map_id
spec_punit_isEmpty 📖mathematicalIsEmpty
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Spec
CommRingCat.of
PUnit.commRing
PrimeSpectrum.instIsEmptyOfSubsingleton
ι_left_coprodIsoSigma_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.WalkingPair.left
CategoryTheory.Limits.sigmaObj
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
small_ulift
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.coprod
CategoryTheory.Limits.pair
CategoryTheory.Limits.Sigma.ι
CategoryTheory.Iso.inv
coprodIsoSigma
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.Sigma.ι_comp_map'
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
small_ulift
UnivLE.small
univLE_of_max
UnivLE.self
ι_right_coprodIsoSigma_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.WalkingPair.right
CategoryTheory.Limits.sigmaObj
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
small_ulift
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.coprod
CategoryTheory.Limits.pair
CategoryTheory.Limits.Sigma.ι
CategoryTheory.Iso.inv
coprodIsoSigma
CategoryTheory.Limits.coprod.inr
CategoryTheory.Limits.Sigma.ι_comp_map'
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
small_ulift
UnivLE.small
univLE_of_max
UnivLE.self
ι_sigmaSpec 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Spec
CategoryTheory.Limits.sigmaObj
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CommRingCat.of
Pi.commRing
CommRingCat.carrier
CommRingCat.commRing
CategoryTheory.Limits.Sigma.ι
sigmaSpec
Spec.map
CommRingCat.ofHom
Pi.evalRingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Limits.Sigma.ι_desc
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
ι_sigmaSpec_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Spec
CategoryTheory.Limits.sigmaObj
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.Sigma.ι
CommRingCat.of
Pi.commRing
CommRingCat.carrier
CommRingCat.commRing
sigmaSpec
Spec.map
CommRingCat.ofHom
Pi.evalRingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_sigmaSpec

AlgebraicGeometry.IsAffineOpen

Theorems

NameKindAssumesProvesValidatesDepends On
biSup_of_disjoint 📖mathematicalAlgebraicGeometry.IsAffineOpen
Set.Pairwise
Function.onFun
AlgebraicGeometry.Scheme.Opens
Disjoint
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
Set
Set.instMembership
iSup_subtype''
Set.Finite.to_subtype
iSup_of_disjoint
iSup_of_disjoint 📖mathematicalAlgebraicGeometry.IsAffineOpen
Pairwise
Function.onFun
AlgebraicGeometry.Scheme.Opens
Disjoint
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
Small.equiv_small
Countable.toSmall
Finite.to_countable
Equiv.finite_iff
Equiv.iSup_congr
Equiv.injective
of_subsingleton 📖mathematicalSet.Subsingleton
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
SetLike.coe
AlgebraicGeometry.Scheme.Opens
TopologicalSpace.Opens.instSetLike
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
AlgebraicGeometry.IsAffineOpenSet.Subsingleton.coe_sort
AlgebraicGeometry.instIsAffineOfSubsingletonCarrierCarrierCommRingCat
sup_of_disjoint 📖mathematicalDisjoint
AlgebraicGeometry.Scheme.Opens
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
AlgebraicGeometry.IsAffineOpen
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
TopologicalSpace.Opens.ext
Set.ext
TopologicalSpace.Opens.coe_iSup
iSup_of_disjoint
Finite.instSum
Finite.of_fintype
instIsEmptyFalse

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
coprodPresheafObjIso 📖CompOp
4 mathmath: coprodPresheafObjIso_hom_fst_assoc, coprodPresheafObjIso_hom_snd_assoc, coprodPresheafObjIso_hom_snd, coprodPresheafObjIso_hom_fst
emptyTo 📖CompOp
4 mathmath: emptyTo_base, AlgebraicGeometry.emptyIsInitial_to, emptyTo_c_app, eq_emptyTo
hom_unique_of_empty_source 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coprodPresheafObjIso_hom_fst 📖mathematicalCategoryTheory.CategoryStruct.comp
CommRingCat
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
CategoryTheory.Limits.coprod
AlgebraicGeometry.Scheme
instCategory
IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
Opens
CategoryTheory.Limits.prod
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.coprod.inr
CommRingCat.hasLimit
small_subtype
small_Pi
CategoryTheory.forget
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Set
Set.instMembership
CategoryTheory.Functor.sections
CategoryTheory.Iso.hom
coprodPresheafObjIso
CategoryTheory.Limits.prod.fst
Hom.app
IsLocallyDirected.instHasColimit
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CommRingCat.hasLimit
small_subtype
small_Pi
AlgebraicGeometry.instIsOpenImmersionInlScheme
AlgebraicGeometry.instIsOpenImmersionInrScheme
Hom.preimage_image_eq
CategoryTheory.eqToHom_op
Hom.appIso_hom
CategoryTheory.Category.assoc
LE.le.trans
le_of_eq
Opposite.op_injective
CategoryTheory.Limits.prod.map_fst
CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp_assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.eqToHom_unop
CategoryTheory.subsingleton_of_unop
Preorder.subsingleton_hom
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
coprodPresheafObjIso_hom_fst_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CommRingCat
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
CategoryTheory.Limits.coprod
AlgebraicGeometry.Scheme
instCategory
IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
Opens
CategoryTheory.Limits.prod
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.coprod.inr
CommRingCat.hasLimit
small_subtype
small_Pi
CategoryTheory.forget
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Set
Set.instMembership
CategoryTheory.Functor.sections
CategoryTheory.Iso.hom
coprodPresheafObjIso
CategoryTheory.Limits.prod.fst
Hom.app
IsLocallyDirected.instHasColimit
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CommRingCat.hasLimit
small_subtype
small_Pi
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coprodPresheafObjIso_hom_fst
coprodPresheafObjIso_hom_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CommRingCat
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
CategoryTheory.Limits.coprod
AlgebraicGeometry.Scheme
instCategory
IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
Opens
CategoryTheory.Limits.prod
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.coprod.inr
CommRingCat.hasLimit
small_subtype
small_Pi
CategoryTheory.forget
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Set
Set.instMembership
CategoryTheory.Functor.sections
CategoryTheory.Iso.hom
coprodPresheafObjIso
CategoryTheory.Limits.prod.snd
Hom.app
IsLocallyDirected.instHasColimit
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CommRingCat.hasLimit
small_subtype
small_Pi
AlgebraicGeometry.instIsOpenImmersionInlScheme
AlgebraicGeometry.instIsOpenImmersionInrScheme
Hom.preimage_image_eq
CategoryTheory.eqToHom_op
Hom.appIso_hom
CategoryTheory.Category.assoc
LE.le.trans
le_of_eq
Opposite.op_injective
CategoryTheory.Limits.prod.map_snd
CategoryTheory.Limits.limit.conePointUniqueUpToIso_hom_comp_assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.eqToHom_unop
CategoryTheory.subsingleton_of_unop
Preorder.subsingleton_hom
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
coprodPresheafObjIso_hom_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CommRingCat
CategoryTheory.Category.toCategoryStruct
CommRingCat.instCategory
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
CategoryTheory.Limits.coprod
AlgebraicGeometry.Scheme
instCategory
IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
Opens
CategoryTheory.Limits.prod
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
CategoryTheory.Limits.coprod.inl
CategoryTheory.Limits.coprod.inr
CommRingCat.hasLimit
small_subtype
small_Pi
CategoryTheory.forget
RingHom
CommRingCat.carrier
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
Set
Set.instMembership
CategoryTheory.Functor.sections
CategoryTheory.Iso.hom
coprodPresheafObjIso
CategoryTheory.Limits.prod.snd
Hom.app
IsLocallyDirected.instHasColimit
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CommRingCat.hasLimit
small_subtype
small_Pi
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
coprodPresheafObjIso_hom_snd
emptyTo_base 📖mathematicalAlgebraicGeometry.PresheafedSpace.Hom.base
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
AlgebraicGeometry.Scheme
instEmptyCollection
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
emptyTo
TopCat.ofHom
TopCat.carrier
instTopologicalSpacePEmpty
TopCat.str
emptyTo_c_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
CategoryTheory.Functor.obj
TopCat.Presheaf
AlgebraicGeometry.Scheme
instEmptyCollection
TopCat.instCategoryPresheaf
TopCat.Presheaf.pushforward
TopCat.ofHom
instTopologicalSpacePEmpty
AlgebraicGeometry.PresheafedSpace.Hom.c
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
emptyTo
CategoryTheory.Limits.IsTerminal.from
CommRingCat.of
PUnit.commRing
CommRingCat.punitIsTerminal
empty_ext 📖Hom.ext'
Unique.instSubsingleton
empty_ext_iff 📖empty_ext
eq_emptyTo 📖mathematicalemptyToempty_ext
isAffine_of_isLimit 📖mathematicalAlgebraicGeometry.IsAffine
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Limits.Cone.ptAlgebraicGeometry.IsAffine.affine
CategoryTheory.NatIso.isIso_of_isIso_app
CategoryTheory.Limits.comp_preservesLimit
AlgebraicGeometry.preservesLimit_rightOp_Γ
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
CategoryTheory.instIsRightAdjointOfMonadicRightAdjoint
AlgebraicGeometry.IsAffine.of_isIso
CategoryTheory.Iso.isIso_hom
AlgebraicGeometry.isAffine_Spec

---

← Back to Index