Documentation Verification Report

Affine

📁 Source: Mathlib/AlgebraicGeometry/Morphisms/Affine.lean

Statistics

MetricCount
DefinitionsIsAffineHom
1
TheoremsisAffine_preimage, isCompact_pullback_inf, preimage, affinePreimage, instHasAffinePropertyIsAffineHomIsAffine, instIsAffineHomCompScheme, instIsAffineHomDescScheme, instIsAffineHomOfIsIsoScheme, instIsAffineHomιBasicOpen, instIsAffinePullbackSchemeOfIsAffineHom, instIsAffinePullbackSchemeOfIsAffineHom_1, instIsMultiplicativeSchemeIsAffineHom, instQuasiCompactOfIsAffineHom, isAffineHom_iff, isAffineHom_isStableUnderBaseChange, isAffineHom_of_forall_exists_isAffineOpen, isAffineHom_of_isAffine, isAffineHom_of_isInducing, isAffineOpen_of_isAffineOpen_basicOpen, isAffine_of_isAffineHom, isAffine_of_isAffineOpen_basicOpen, isIso_morphismRestrict_iff_isIso_app, isRetrocompact_basicOpen
23
Total24

AlgebraicGeometry

Definitions

NameCategoryTheorems
IsAffineHom 📖CompData
32 mathmath: instHasAffinePropertyIsAffineHomIsAffine, instIsAffineHomOfIsIsoScheme, IsIntegralHom.iff_universallyClosed_and_isAffineHom, IsAffineHom.comp_iff, isAffineHom_of_isAffine, IsClosedImmersion.instIsAffineHom, IsFinite.iff_isProper_and_isAffineHom, instIsAffineHomDescScheme, HasAffineProperty.affineAnd_eq_of_propertyIsLocal, isAffineHom_of_forall_exists_isAffineOpen, isClosedImmersion_iff_isAffineHom, isAffineHom_isStableUnderBaseChange, isAffineHom_of_isInducing, isAffineHom_iff, AffineSpace.instIsAffineHomOverSchemeInferInstanceOverClass, targetAffineLocally_affineAnd_eq_affineLocally, HasAffineProperty.affineAnd_iff, IsIntegralHom.toIsAffineHom, isIntegralHom_iff, IsFinite.toIsAffineHom, instIsAffineHomCompScheme, targetAffineLocally_affineAnd_iff', IsFinite.eq_isProper_inf_isAffineHom, targetAffineLocally_affineAnd_iff_affineLocally, instHasOfPostcompPropertySchemeIsAffineHomIsSeparated, isFinite_iff, HasAffineProperty.affineAnd_le_isAffineHom, instIsMultiplicativeSchemeIsAffineHom, IsAffineHom.of_comp, IsIntegralHom.eq_universallyClosed_inf_isAffineHom, instIsAffineHomιBasicOpen, Scheme.Hom.instIsAffineHomToNormalization

Theorems

NameKindAssumesProvesValidatesDepends On
affinePreimage 📖mathematicalIsAffineOpen
CategoryTheory.Functor.obj
Scheme.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
IsAffineOpen.preimage
instHasAffinePropertyIsAffineHomIsAffine 📖mathematicalHasAffineProperty
IsAffineHom
IsAffine
IsAffine.of_isIso
CategoryTheory.Iso.isIso_hom
Scheme.preimage_basicOpen
IsAffineOpen.basicOpen
isAffineOpen_top
isAffine_of_isAffineOpen_basicOpen
Ideal.map_top
RingHom.instRingHomClass
Ideal.map_span
CategoryTheory.MorphismProperty.ext
instIsAffineHomCompScheme 📖mathematicalIsAffineHom
CategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Scheme.Hom.comp_base
TopologicalSpace.Opens.map_comp_obj
IsAffineHom.isAffine_preimage
instIsAffineHomDescScheme 📖mathematicalIsAffineHom
CategoryTheory.Limits.coprod
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Limits.pair
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.coprod.desc
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
IsAffineOpen.preimage
instIsOpenImmersionMapScheme
Scheme.Opens.instIsOpenImmersionι
le_antisymm
Homeomorph.surjective
coprodMk_inl
CategoryTheory.Limits.colimit.ι_desc
CategoryTheory.Limits.coprod.inl_map
coprodMk_inr
CategoryTheory.Limits.coprod.inr_map
isAffineOpen_opensRange
instIsAffineCoprodScheme
instIsAffineHomOfIsIsoScheme 📖mathematicalIsAffineHomIsAffineOpen.preimage_of_isIso
instIsAffineHomιBasicOpen 📖mathematicalIsAffineHom
Scheme.Opens.toScheme
Scheme.basicOpen
Top.top
Scheme.Opens
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Scheme.Opens.ι
Scheme.Opens.instIsOpenImmersionι
Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion
le_top
Scheme.basicOpen_res
TopologicalSpace.Opens.ext
Set.image_preimage_eq_inter_range
Scheme.Opens.range_ι
IsAffineOpen.basicOpen
instIsAffinePullbackSchemeOfIsAffineHom 📖mathematicalIsAffine
CategoryTheory.Limits.pullback
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullback
isAffine_of_isAffineHom
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.pullback_snd
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
isAffineHom_isStableUnderBaseChange
instIsAffinePullbackSchemeOfIsAffineHom_1 📖mathematicalIsAffine
CategoryTheory.Limits.pullback
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullback
isAffine_of_isAffineHom
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.pullback_fst
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
isAffineHom_isStableUnderBaseChange
instIsMultiplicativeSchemeIsAffineHom 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
Scheme
Scheme.instCategory
IsAffineHom
instIsAffineHomOfIsIsoScheme
CategoryTheory.IsIso.id
instIsAffineHomCompScheme
instQuasiCompactOfIsAffineHom 📖mathematicalQuasiCompactquasiCompact_iff_forall_isAffineOpen
IsAffineOpen.isCompact
IsAffineOpen.preimage
isAffineHom_iff 📖mathematicalIsAffineHom
IsAffineOpen
CategoryTheory.Functor.obj
Scheme.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
isAffineHom_isStableUnderBaseChange 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderBaseChange
Scheme
Scheme.instCategory
IsAffineHom
HasAffineProperty.isStableUnderBaseChange
instHasAffinePropertyIsAffineHomIsAffine
AffineTargetMorphismProperty.IsLocal.respectsIso
HasAffineProperty.isLocal_affineProperty
Scheme.Pullback.instHasPullback
Scheme.Pullback.isAffine_of_isAffine_isAffine_isAffine
isAffineHom_of_forall_exists_isAffineOpen 📖mathematicalTopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Scheme.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
SheafedSpace.instTopologicalSpaceCarrierCarrier
IsAffineOpen
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
IsAffineHomHasAffineProperty.iff_of_iSup_eq_top
instHasAffinePropertyIsAffineHomIsAffine
top_le_iff
isAffineHom_of_isAffine 📖mathematicalIsAffineHomHasAffineProperty.iff_of_isAffine
instHasAffinePropertyIsAffineHomIsAffine
isAffineHom_of_isInducing 📖mathematicalTopology.IsInducing
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
IsAffineHomisAffineHom_of_forall_exists_isAffineOpen
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
Scheme.isBasis_affineOpens
Set.mem_univ
isOpen_univ
TopologicalSpace.Opens.isOpen
Topology.IsInducing.isOpen_iff
TopologicalSpace.Opens.is_open'
inf_le_right
TopologicalSpace.Opens.ext
IsAffineOpen.exists_basicOpen_le
IsAffineOpen.basicOpen
Scheme.preimage_basicOpen
Scheme.Hom.naturality
Scheme.basicOpen_res
IsClosed.isOpen_compl
Set.preimage_eq_empty_iff
Set.subset_compl_iff_disjoint_right
isAffineOpen_bot
isAffineOpen_of_isAffineOpen_basicOpen 📖Ideal.span
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsAffineOpen
Scheme.basicOpen
isAffine_of_isAffineOpen_basicOpen
Ideal.map_span
RingHom.instRingHomClass
Ideal.map_top
Scheme.Opens.instIsOpenImmersionι
Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion
Scheme.image_basicOpen
Scheme.Opens.ι_appIso
CategoryTheory.eqToHom_op
RingHomCompTriple.comp_apply
RingHomCompTriple.right_ids
Scheme.basicOpen_res_eq
CategoryTheory.instIsIsoEqToHom
isAffine_of_isAffineHom 📖mathematicalIsAffineHasAffineProperty.iff_of_isAffine
instHasAffinePropertyIsAffineHomIsAffine
isAffine_of_isAffineOpen_basicOpen 📖mathematicalIdeal.span
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
IsAffineOpen
Scheme.basicOpen
IsAffineIdeal.span_eq_top_iff_finite
isCompact_univ_iff
TopologicalSpace.Opens.coe_top
iSup_basicOpen_of_span_eq_top
isOpen_iUnion
TopologicalSpace.Opens.is_open'
Set.iUnion_congr_Prop
iSup_congr_Prop
Finset.isCompact_biUnion
IsAffineOpen.isCompact
HasAffineProperty.of_iSup_eq_top
instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop
IsAffineOpen.basicOpen
isAffineOpen_top
instIsAffineObjOppositeCommRingCatSchemeSpec
PrimeSpectrum.iSup_basicOpen_eq_top_iff
Subtype.range_coe_subtype
Set.setOf_mem_eq
Scheme.toSpecΓ_preimage_basicOpen
Scheme.Opens.instIsOpenImmersionι
image_morphismRestrict_preimage
morphismRestrict_app
CategoryTheory.IsIso.comp_isIso'
Scheme.Hom.image_top_eq_opensRange
Scheme.Opens.opensRange_ι
isIso_ΓSpec_adjunction_unit_app_basicOpen
CategoryTheory.Functor.map_isIso
CategoryTheory.isIso_op
CategoryTheory.instIsIsoEqToHom
isIso_morphismRestrict_iff_isIso_app 📖mathematicalCategoryTheory.IsIso
Scheme
Scheme.instCategory
Scheme.Opens.toScheme
CategoryTheory.Functor.obj
Scheme.Opens
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
morphismRestrict
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
SheafedSpace.instTopologicalSpaceCarrierCarrier
Scheme.Hom.app
HasAffineProperty.iff_of_isAffine
instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop
IsAffineOpen.preimage
le_rfl
Scheme.Hom.app_eq_appLE
Scheme.Opens.instIsOpenImmersionι
Eq.le
image_morphismRestrict_preimage
morphismRestrict_app'
Scheme.Hom.image_top_eq_opensRange
Scheme.Opens.opensRange_ι
isRetrocompact_basicOpen 📖mathematicalIsRetrocompact
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
Scheme.Opens
TopologicalSpace.Opens.instSetLike
Scheme.basicOpen
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsRetrocompact_iff_isSpectralMap_subtypeVal
Scheme.Hom.isSpectralMap
instQuasiCompactOfIsAffineHom
instIsAffineHomιBasicOpen

AlgebraicGeometry.IsAffineHom

Theorems

NameKindAssumesProvesValidatesDepends On
isAffine_preimage 📖mathematicalAlgebraicGeometry.IsAffineOpen
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'

AlgebraicGeometry.IsAffineOpen

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_pullback_inf 📖mathematicalIsCompact
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
SetLike.coe
AlgebraicGeometry.Scheme.Opens
TopologicalSpace.Opens.instSetLike
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.Limits.pullback
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.Pullback.instHasPullback
Set
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback.snd
isCompact_iff_compactSpace
AlgebraicGeometry.Scheme.Opens.instIsOpenImmersionι
Set.range_comp
AlgebraicGeometry.Scheme.Opens.range_ι
AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.Scheme.Hom.resLE_comp_ι
AlgebraicGeometry.IsOpenImmersion.lift_fac
AlgebraicGeometry.Scheme.Pullback.range_map
AlgebraicGeometry.IsOpenImmersion.mono
isCompact_range
AlgebraicGeometry.instCompactSpaceCarrierCarrierCommRingCatPullbackSchemeOfQuasiCompact_1
AlgebraicGeometry.quasiCompact_of_compactSpace
AlgebraicGeometry.quasiSeparatedSpace_of_isAffine
AlgebraicGeometry.Scheme.compactSpace_of_isAffine
AlgebraicGeometry.Scheme.Hom.continuous
preimage 📖mathematicalAlgebraicGeometry.IsAffineOpen
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme.Opens
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
AlgebraicGeometry.IsAffineHom.isAffine_preimage

---

← Back to Index