Documentation Verification Report

Constructors

📁 Source: Mathlib/AlgebraicGeometry/Morphisms/Constructors.lean

Statistics

MetricCount
Definitionsdiagonal, stalkwise, topologically
3
Theoremsdiagonal_of_openCover_source, diagonal_respectsIso, isStableUnderBaseChange_of_isStableUnderBaseChangeOnAffine_of_isZariskiLocalAtTarget, diagonal_affineProperty_isLocal, diagonal_iff, diagonal_of_diagonal_of_isPullback, diagonal_of_openCover, diagonal_of_openCover_diagonal, instHasAffinePropertyDiagonalSchemeDiagonal, instIsZariskiLocalAtSourceDiagonalSchemeOfHasOfPostcompPropertyOfRespectsRightIsOpenImmersion, instIsZariskiLocalAtTargetDiagonalScheme, stalkwiseIsLocalAtTarget_of_respectsIso, stalkwiseIsZariskiLocalAtTarget_of_respectsIso, stalkwise_SpecMap_iff, stalkwise_Spec_map_iff, stalkwise_isLocalAtSource_of_respectsIso, stalkwise_isZariskiLocalAtSource_of_respectsIso, stalkwise_respectsIso, topologically_isLocalAtSource, topologically_isLocalAtSource', topologically_isLocalAtTarget, topologically_isLocalAtTarget', topologically_isStableUnderComposition, topologically_isZariskiLocalAtSource, topologically_isZariskiLocalAtSource', topologically_isZariskiLocalAtTarget, topologically_isZariskiLocalAtTarget', topologically_iso_le, topologically_respectsIso, universally_isLocalAtSource, universally_isLocalAtTarget, universally_isZariskiLocalAtSource, universally_isZariskiLocalAtTarget
33
Total36

AlgebraicGeometry

Definitions

NameCategoryTheorems
stalkwise 📖CompOp
12 mathmath: SurjectiveOnStalks.eq_stalkwise, stalkwiseIsLocalAtTarget_of_respectsIso, stalkwise_SpecMap_iff, stalkwise_isZariskiLocalAtSource_of_respectsIso, stalkwiseIsZariskiLocalAtTarget_of_respectsIso, stalkwise_respectsIso, HasRingHomProperty.stalkwise, isOpenImmersion_eq_inf, instIsZariskiLocalAtTargetStalkwiseBijectiveCoeRingHom, stalkwise_Spec_map_iff, isomorphisms_eq_stalkwise, stalkwise_isLocalAtSource_of_respectsIso
topologically 📖CompOp
51 mathmath: injective_isStableUnderComposition, isClosedEmbedding_isZariskiLocalAtTarget, topologically_isZariskiLocalAtTarget', topologically_isZariskiLocalAtTarget, isImmersion_eq_inf, UniversallyOpen.out, isOpenMap_isZariskiLocalAtTarget, instIsZariskiLocalAtSourceTopologicallyGeneralizingMap, isOpenEmbedding_isZariskiLocalAtTarget, injective_isZariskiLocalAtTarget, topologically_isLocalAtSource, specializingMap_isZariskiLocalAtTarget, universallyInjective_iff, ValuativeCriterion.Existence.eq, instRespectsIsoSchemeTopologicallyIsOpenEmbedding, topologically_iso_le, instRespectsIsoSchemeTopologicallyIsClosedEmbedding, universallyInjective_eq, isClosedMap_isZariskiLocalAtTarget, specializingMap_respectsIso, UniversallyClosed.out, topologically_isZariskiLocalAtSource', topologically_isZariskiLocalAtSource, UniversallyOpen.instIsStableUnderCompositionSchemeTopologicallyIsOpenMap, topologically_isLocalAtSource', isOpenImmersion_eq_inf, IsClosedImmersion.eq_inf, isClosedMap_isStableUnderComposition, topologically_isLocalAtTarget, isPreimmersion_eq_inf, UniversallyOpen.eq, UniversallyOpen.universally_isOpenMap, universallyOpen_iff, UniversallyClosed.universally_isClosedMap, universallyClosed_eq_universallySpecializing, topologically_respectsIso, instRespectsIsoSchemeTopologicallyInjective, surjective_eq_topologically, topologically_isStableUnderComposition, instRespectsIsoSchemeTopologicallyIsClosedMap, instRespectsIsoSchemeTopologicallyGeneralizingMap, instIsZariskiLocalAtTargetTopologicallyGeneralizingMap, universallyClosed_iff, instIsZariskiLocalAtSourceTopologicallyIsOpenMap, dominant_eq_topologically, universallyClosed_eq, isEmbedding_isZariskiLocalAtTarget, topologically_isLocalAtTarget', instRespectsIsoSchemeTopologicallyIsOpenMap, instRespectsIsoSchemeTopologicallyIsEmbedding, UniversallyInjective.universally_injective

Theorems

NameKindAssumesProvesValidatesDepends On
instHasAffinePropertyDiagonalSchemeDiagonal 📖mathematicalHasAffineProperty
CategoryTheory.MorphismProperty.diagonal
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullbacks
AffineTargetMorphismProperty.diagonal
Scheme.Pullback.instHasPullbacks
HasAffineProperty.diagonal_affineProperty_isLocal
HasAffineProperty.isLocal_affineProperty
CategoryTheory.MorphismProperty.ext
HasAffineProperty.diagonal_of_diagonal_of_isPullback
instIsAffineToSchemeValOpensMemSetAffineOpens
Scheme.Opens.instIsOpenImmersionι
CategoryTheory.IsPullback.flip
isPullback_morphismRestrict
HasAffineProperty.diagonal_of_openCover_diagonal
Scheme.isAffine_affineCover
of_targetAffineLocally_of_isPullback
Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
isOpenImmersion_stableUnderBaseChange
Scheme.Pullback.instHasPullback
Scheme.instIsOpenImmersionF
CategoryTheory.IsPullback.of_hasPullback
instIsZariskiLocalAtSourceDiagonalSchemeOfHasOfPostcompPropertyOfRespectsRightIsOpenImmersion 📖mathematicalIsZariskiLocalAtSource
CategoryTheory.MorphismProperty.diagonal
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullbacks
Scheme.Pullback.instHasPullback
CategoryTheory.Category.comp_id
IsZariskiLocalAtSource.mk'
Scheme.Pullback.instHasPullbacks
CategoryTheory.MorphismProperty.RespectsIso.diagonal
CategoryTheory.MorphismProperty.IsLocalAtSource.toRespects
CategoryTheory.MorphismProperty.of_postcomp
Scheme.pullback_map_isOpenImmersion
Scheme.Opens.instIsOpenImmersionι
IsOpenImmersion.mono
IsOpenImmersion.of_isIso
CategoryTheory.IsIso.id
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Limits.pullback.comp_diagonal
IsZariskiLocalAtSource.comp
IsZariskiLocalAtSource.of_iSup_eq_top
CategoryTheory.MorphismProperty.RespectsRight.postcomp
instIsZariskiLocalAtTargetDiagonalScheme 📖mathematicalIsZariskiLocalAtTarget
CategoryTheory.MorphismProperty.diagonal
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullbacks
Scheme.Pullback.instHasPullbacks
HasAffineProperty.instIsZariskiLocalAtTarget
instHasAffinePropertyDiagonalSchemeDiagonal
HasAffineProperty.of_isZariskiLocalAtTarget
stalkwiseIsLocalAtTarget_of_respectsIso 📖mathematicalRingHom.RespectsIsoIsZariskiLocalAtTarget
stalkwise
stalkwiseIsZariskiLocalAtTarget_of_respectsIso
stalkwiseIsZariskiLocalAtTarget_of_respectsIso 📖mathematicalRingHom.RespectsIsoIsZariskiLocalAtTarget
stalkwise
RingHom.toMorphismProperty_respectsIso_iff
IsZariskiLocalAtTarget.mk'
stalkwise_respectsIso
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
TopologicalSpace.Opens.mem_iSup
stalkwise_SpecMap_iff 📖mathematicalRingHom.RespectsIsostalkwise
Spec
Spec.map
Localization.AtPrime
CommRingCat.carrier
CommRing.toCommSemiring
CommRingCat.commRing
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
CommRingCat.Hom.hom
RingHom.instRingHomClass
Ideal.IsPrime.comap
OreLocalization.instCommRing
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Localization.localRingHom
Ideal
RingHom.toMorphismProperty_respectsIso_iff
RingHom.instRingHomClass
Ideal.IsPrime.comap
PrimeSpectrum.isPrime
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
stalkwise_Spec_map_iff 📖mathematicalRingHom.RespectsIsostalkwise
Spec
Spec.map
Localization.AtPrime
CommRingCat.carrier
CommRing.toCommSemiring
CommRingCat.commRing
Ideal.comap
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
CommRingCat.Hom.hom
RingHom.instRingHomClass
Ideal.IsPrime.comap
OreLocalization.instCommRing
Ideal.primeCompl
OreLocalization.oreSetComm
CommSemiring.toCommMonoid
Localization.localRingHom
Ideal
stalkwise_SpecMap_iff
stalkwise_isLocalAtSource_of_respectsIso 📖mathematicalRingHom.RespectsIsoIsZariskiLocalAtSource
stalkwise
stalkwise_isZariskiLocalAtSource_of_respectsIso
stalkwise_isZariskiLocalAtSource_of_respectsIso 📖mathematicalRingHom.RespectsIsoIsZariskiLocalAtSource
stalkwise
IsZariskiLocalAtSource.mk'
stalkwise_respectsIso
CommRingCat.Colimits.hasColimits_commRingCat
Scheme.Hom.stalkMap_comp
CommRingCat.hom_comp
RingHom.RespectsIso.cancel_right_isIso
IsOpenImmersion.instIsIsoCommRingCatStalkMap
Scheme.Opens.instIsOpenImmersionι
TopologicalSpace.Opens.mem_iSup
stalkwise_respectsIso 📖mathematicalRingHom.RespectsIsoCategoryTheory.MorphismProperty.RespectsIso
Scheme
Scheme.instCategory
stalkwise
CommRingCat.Colimits.hasColimits_commRingCat
Scheme.Hom.stalkMap_comp
RingHom.RespectsIso.cancel_right_isIso
IsOpenImmersion.instIsIsoCommRingCatStalkMap
IsOpenImmersion.of_isIso
RingHom.RespectsIso.cancel_left_isIso
topologically_isLocalAtSource 📖mathematicalTopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
IsZariskiLocalAtSource
topologically
topologically_isZariskiLocalAtSource
topologically_isLocalAtSource' 📖mathematicalTopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
IsZariskiLocalAtSource
topologically
topologically_isZariskiLocalAtSource'
topologically_isLocalAtTarget 📖mathematicalSet.Elem
Set.preimage
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrictPreimage
IsZariskiLocalAtTarget
topologically
topologically_isZariskiLocalAtTarget
topologically_isLocalAtTarget' 📖mathematicalSet.Elem
Set.preimage
TopologicalSpace.Opens.carrier
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrictPreimage
IsZariskiLocalAtTarget
topologically
topologically_isZariskiLocalAtTarget'
topologically_isStableUnderComposition 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderComposition
Scheme
Scheme.instCategory
topologically
topologically_isZariskiLocalAtSource 📖mathematicalTopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
IsZariskiLocalAtSource
topologically
IsZariskiLocalAtSource.mk'
Scheme.Hom.continuous
topologically_isZariskiLocalAtSource' 📖mathematicalTopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
IsZariskiLocalAtSource
topologically
topologically_isZariskiLocalAtSource
TopologicalSpace.IsOpenCover.eq_1
top_le_iff
le_iSup
topologically_isZariskiLocalAtTarget 📖mathematicalSet.Elem
Set.preimage
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrictPreimage
IsZariskiLocalAtTarget
topologically
IsZariskiLocalAtTarget.mk'
morphismRestrict_base
Scheme.Hom.continuous
TopologicalSpace.Opens.is_open'
topologically_isZariskiLocalAtTarget' 📖mathematicalSet.Elem
Set.preimage
TopologicalSpace.Opens.carrier
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrictPreimage
IsZariskiLocalAtTarget
topologically
topologically_isZariskiLocalAtTarget
TopologicalSpace.IsOpenCover.eq_1
top_le_iff
le_iSup
topologically_iso_le 📖mathematicalDFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
CategoryTheory.MorphismProperty
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.isomorphisms
topologically
Scheme.Hom.isIso_base
topologically_respectsIso 📖mathematicalDFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
CategoryTheory.MorphismProperty.RespectsIso
Scheme
Scheme.instCategory
topologically
topologically_isStableUnderComposition
CategoryTheory.MorphismProperty.respectsIso_of_isStableUnderComposition
topologically_iso_le
universally_isLocalAtSource 📖mathematicalIsZariskiLocalAtSource
CategoryTheory.MorphismProperty.universally
Scheme
Scheme.instCategory
universally_isZariskiLocalAtSource
universally_isLocalAtTarget 📖mathematicalIsZariskiLocalAtTarget
CategoryTheory.MorphismProperty.universally
Scheme
Scheme.instCategory
universally_isZariskiLocalAtTarget
universally_isZariskiLocalAtSource 📖mathematicalIsZariskiLocalAtSource
CategoryTheory.MorphismProperty.universally
Scheme
Scheme.instCategory
CategoryTheory.MorphismProperty.IsLocalAtSource.mk_of_iff
CategoryTheory.MorphismProperty.universally_respectsIso
CategoryTheory.MorphismProperty.universally_mk'
CategoryTheory.MorphismProperty.IsLocalAtSource.toRespects
Scheme.Pullback.instHasPullback
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.MorphismProperty.cancel_left_of_respectsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.pullbackLeftPullbackSndIso_hom_fst
IsZariskiLocalAtSource.comp
CategoryTheory.IsPullback.of_hasPullback
IsOpenImmersion.instFstScheme
Scheme.instIsOpenImmersionF
Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
isOpenImmersion_stableUnderBaseChange
IsZariskiLocalAtSource.iff_of_openCover
universally_isZariskiLocalAtTarget 📖mathematicalIsZariskiLocalAtTarget
CategoryTheory.MorphismProperty.universally
Scheme
Scheme.instCategory
IsZariskiLocalAtTarget.mk'
CategoryTheory.MorphismProperty.universally_respectsIso
CategoryTheory.MorphismProperty.of_isPullback
CategoryTheory.MorphismProperty.universally_isStableUnderBaseChange
CategoryTheory.IsPullback.flip
isPullback_morphismRestrict
isOpen_iUnion
TopologicalSpace.Opens.is_open'
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
CategoryTheory.IsPullback.paste_vert_iff
CategoryTheory.cancel_mono
IsOpenImmersion.mono
Scheme.Opens.instIsOpenImmersionι
CategoryTheory.Category.assoc
morphismRestrict_ι
morphismRestrict_ι_assoc
Scheme.isoOfEq_hom_ι_assoc
CategoryTheory.IsPullback.paste_vert

AlgebraicGeometry.AffineTargetMorphismProperty

Definitions

NameCategoryTheorems
diagonal 📖CompOp
7 mathmath: AlgebraicGeometry.HasAffineProperty.diagonal_of_diagonal_of_isPullback, AlgebraicGeometry.HasAffineProperty.diagonal_iff, AlgebraicGeometry.quasiCompact_affineProperty_iff_quasiSeparatedSpace, AlgebraicGeometry.HasAffineProperty.diagonal_affineProperty_isLocal, diagonal_respectsIso, AlgebraicGeometry.instHasAffinePropertyDiagonalSchemeDiagonal, diagonal_of_openCover_source

Theorems

NameKindAssumesProvesValidatesDepends On
diagonal_of_openCover_source 📖mathematicalAlgebraicGeometry.IsAffine
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback.mapDesc
AlgebraicGeometry.Scheme.Pullback.isAffine_of_isAffine_isAffine_isAffine
diagonalAlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.Scheme.Pullback.isAffine_of_isAffine_isAffine_isAffine
AlgebraicGeometry.Scheme.Pullback.instHasPullbacks
AlgebraicGeometry.HasAffineProperty.diagonal_iff
AlgebraicGeometry.HasAffineProperty.instTargetAffineLocallyOfIsLocal
AlgebraicGeometry.HasAffineProperty.of_openCover
AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
AlgebraicGeometry.Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
CategoryTheory.Category.comp_id
CategoryTheory.IsPullback.of_iso
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Category.id_comp
CategoryTheory.Limits.pullback_fst_map_snd_isPullback
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.pullback.map_isIso
CategoryTheory.IsIso.id
CategoryTheory.Limits.pullback_fst_iso_of_right_iso
CategoryTheory.Limits.limit.lift_π_assoc
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Limits.pullback.map.congr_simp
cancel_left_of_respectsIso
IsLocal.respectsIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsPullback.isoPullback_hom_snd
diagonal_respectsIso 📖mathematicalCategoryTheory.MorphismProperty.RespectsIso
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
toProperty
diagonal
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.mapDesc_comp
cancel_left_of_respectsIso
CategoryTheory.Limits.pullback.map_isIso
CategoryTheory.IsIso.id
CategoryTheory.Iso.isIso_hom
AlgebraicGeometry.Scheme.Pullback.isAffine_of_isAffine_isAffine_isAffine
cancel_right_of_respectsIso
AlgebraicGeometry.IsOpenImmersion.comp
AlgebraicGeometry.IsOpenImmersion.of_isIso
AlgebraicGeometry.IsAffine.of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.comp_isIso
isStableUnderBaseChange_of_isStableUnderBaseChangeOnAffine_of_isZariskiLocalAtTarget 📖mathematicalIsStableUnderBaseChange
of
CategoryTheory.MorphismProperty.IsStableUnderBaseChange
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.HasAffineProperty.isStableUnderBaseChange
AlgebraicGeometry.HasAffineProperty.of_isZariskiLocalAtTarget

AlgebraicGeometry.HasAffineProperty

Theorems

NameKindAssumesProvesValidatesDepends On
diagonal_affineProperty_isLocal 📖mathematicalAlgebraicGeometry.AffineTargetMorphismProperty.IsLocal
AlgebraicGeometry.AffineTargetMorphismProperty.diagonal
AlgebraicGeometry.AffineTargetMorphismProperty.diagonal_respectsIso
AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.respectsIso
diagonal_of_diagonal_of_isPullback
instTargetAffineLocallyOfIsLocal
AlgebraicGeometry.IsAffineOpen.instIsAffineToSchemeBasicOpen
AlgebraicGeometry.Scheme.Opens.instIsOpenImmersionι
CategoryTheory.IsPullback.flip
AlgebraicGeometry.isPullback_morphismRestrict
AlgebraicGeometry.Scheme.Pullback.instHasPullbacks
diagonal_iff
AlgebraicGeometry.IsAffineOpen.iSup_basicOpen_eq_self_iff
AlgebraicGeometry.isAffineOpen_top
AlgebraicGeometry.IsAffineOpen.basicOpen
diagonal_of_openCover_diagonal
AlgebraicGeometry.IsOpenImmersion.hasPullback_of_right
AlgebraicGeometry.Scheme.instIsOpenImmersionF
AlgebraicGeometry.IsAffine.of_isIso
AlgebraicGeometry.Scheme.Opens.opensRange_ι
CategoryTheory.Arrow.isIso_right
CategoryTheory.Iso.isIso_inv
AlgebraicGeometry.AffineTargetMorphismProperty.arrow_mk_iso_iff
diagonal_iff 📖mathematicalAlgebraicGeometry.AffineTargetMorphismProperty.diagonal
CategoryTheory.MorphismProperty.diagonal
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.Pullback.instHasPullbacks
AlgebraicGeometry.Scheme.Pullback.instHasPullbacks
AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.isOpenImmersion_respectsIso
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
AlgebraicGeometry.isOpenImmersion_isMultiplicative
AlgebraicGeometry.isOpenImmersion_isStableUnderComposition
CategoryTheory.Limits.pullback_fst_iso_of_right_iso
CategoryTheory.IsIso.id
CategoryTheory.IsIso.inv_isIso
AlgebraicGeometry.Scheme.isAffine_affineCover
diagonal_of_openCover
AlgebraicGeometry.instIsAffineXSchemeCoverOfIsIsoIsOpenImmersionId
CategoryTheory.Category.comp_id
CategoryTheory.Limits.pullback.condition
AlgebraicGeometry.AffineTargetMorphismProperty.cancel_left_of_respectsIso
AlgebraicGeometry.AffineTargetMorphismProperty.diagonal_respectsIso
AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.respectsIso
isLocal_affineProperty
AlgebraicGeometry.Scheme.instIsOpenImmersionF
diagonal_of_diagonal_of_isPullback
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.IsPullback.of_id_fst
diagonal_of_diagonal_of_isPullback 📖mathematicalCategoryTheory.IsPullback
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.MorphismProperty.diagonal
AlgebraicGeometry.Scheme.Pullback.instHasPullbacks
AlgebraicGeometry.AffineTargetMorphismProperty.diagonalAlgebraicGeometry.Scheme.Pullback.instHasPullbacks
AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.AffineTargetMorphismProperty.cancel_left_of_respectsIso
AlgebraicGeometry.AffineTargetMorphismProperty.diagonal_respectsIso
AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.respectsIso
isLocal_affineProperty
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsPullback.isoPullback_inv_snd
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Iso.isIso_hom
AlgebraicGeometry.Scheme.Pullback.isAffine_of_isAffine_isAffine_isAffine
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Category.comp_id
CategoryTheory.Limits.pullbackDiagonalMapIso.hom_fst
CategoryTheory.Limits.pullbackDiagonalMapIso.hom_snd
of_isPullback
AlgebraicGeometry.Scheme.pullback_map_isOpenImmersion
AlgebraicGeometry.IsOpenImmersion.comp
AlgebraicGeometry.IsOpenImmersion.instFstScheme
AlgebraicGeometry.IsOpenImmersion.mono
CategoryTheory.IsPullback.of_hasPullback
diagonal_of_openCover 📖mathematicalAlgebraicGeometry.IsAffine
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Limits.pullback
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.Cover.pullbackHom
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
AlgebraicGeometry.Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
CategoryTheory.Limits.pullback.mapDesc
AlgebraicGeometry.Scheme.Pullback.isAffine_of_isAffine_isAffine_isAffine
CategoryTheory.MorphismProperty.diagonal
AlgebraicGeometry.Scheme.Pullback.instHasPullbacks
AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
AlgebraicGeometry.Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.Scheme.Pullback.isAffine_of_isAffine_isAffine_isAffine
AlgebraicGeometry.Scheme.instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition
AlgebraicGeometry.isOpenImmersion_isStableUnderComposition
of_openCover
AlgebraicGeometry.Scheme.Pullback.instHasPullbacks
AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasPullbackHorizPaste
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.IsPullback.instHasPullbackFst
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Category.assoc
CategoryTheory.Limits.limit.lift_π_assoc
AlgebraicGeometry.AffineTargetMorphismProperty.cancel_left_of_respectsIso
AlgebraicGeometry.AffineTargetMorphismProperty.IsLocal.respectsIso
isLocal_affineProperty
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Limits.pullback.map_isIso
CategoryTheory.IsIso.id
CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_fst
CategoryTheory.Limits.pullbackDiagonalMapIso.inv_snd_snd
diagonal_of_openCover_diagonal 📖mathematicalAlgebraicGeometry.IsAffine
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
AlgebraicGeometry.AffineTargetMorphismProperty.diagonal
CategoryTheory.Precoverage.ZeroHypercover.pullback₁
AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
AlgebraicGeometry.Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme.Cover.pullbackHom
CategoryTheory.MorphismProperty.diagonal
AlgebraicGeometry.Scheme.Pullback.instHasPullbacks
AlgebraicGeometry.Scheme.instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
AlgebraicGeometry.Scheme.instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
AlgebraicGeometry.Scheme.Pullback.instHasPullback
diagonal_of_openCover
AlgebraicGeometry.Scheme.isAffine_affineCover
AlgebraicGeometry.Scheme.instIsOpenImmersionF

---

← Back to Index