Documentation Verification Report

Flat

πŸ“ Source: Mathlib/AlgebraicGeometry/Morphisms/Flat.lean

Statistics

MetricCount
DefinitionsFlat, pushoutSection
2
Theoremscomp, epi_of_flat_of_surjective, flat_and_surjective_iff_faithfullyFlat_of_isAffine, flat_appLE, flat_of_affine_subset, iff_flat_stalkMap, instDescScheme, instFstScheme, instHasRingHomPropertyFlat, instIsMultiplicativeScheme, instIsStableUnderCompositionScheme, instMorphismRestrict, instOfIsOpenImmersion, instOfSubsingletonCarrierCarrierCommRingCatOfIsIntegral, instResLE, instSndScheme, isQuotientMap_of_surjective, isStableUnderBaseChange, of_stalkMap, stalkMap, flat_appLE, flat_and_surjective_SpecMap_iff, flat_iff, isIso_pushoutSection_iff, isIso_pushoutSection_of_iSup_eq, isIso_pushoutSection_of_isAffineOpen, isIso_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, isIso_pushoutSection_of_isQuasiSeparated_of_flat_left, isIso_pushoutSection_of_isQuasiSeparated_of_flat_right, mono_pushoutSection_of_iSup_eq, mono_pushoutSection_of_isCompact_of_flat_left, mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat, mono_pushoutSection_of_isCompact_of_flat_right, mono_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat
34
Total36

AlgebraicGeometry

Definitions

NameCategoryTheorems
Flat πŸ“–CompData
24 mathmath: descendsAlong_isOpenImmersion_surjective_inf_flat_inf_quasicompact', descendsAlong_universallyClosed_surjective_inf_flat_inf_quasicompact, instFlatOfSmooth, descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact, Flat.instMorphismRestrict, Flat.of_stalkMap, Flat.instFstScheme, instDescendsAlongSchemeMinMorphismPropertySurjectiveFlatLocallyOfFinitePresentationOfQuasiCompactOfIsZariskiLocalAtTarget, Flat.instIsMultiplicativeScheme, Flat.flat_and_surjective_iff_faithfullyFlat_of_isAffine, Flat.instHasRingHomPropertyFlat, Flat.instResLE, Flat.comp, Flat.instOfIsOpenImmersion, Flat.surjective_descendsAlong_surjective_inf_flat_inf_quasicompact, Flat.instOfSubsingletonCarrierCarrierCommRingCatOfIsIntegral, Flat.iff_flat_stalkMap, Flat.instIsStableUnderCompositionScheme, flat_and_surjective_SpecMap_iff, Flat.isStableUnderBaseChange, Flat.instSndScheme, flat_iff, descendsAlong_universallyOpen_surjective_inf_flat_inf_quasicompact, descendsAlong_universallyInjective_surjective_inf_flat_inf_quasicompact
pushoutSection πŸ“–CompOp
9 mathmath: isIso_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat, mono_pushoutSection_of_isCompact_of_flat_right, mono_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat, isIso_pushoutSection_of_isQuasiSeparated_of_flat_left, isIso_pushoutSection_iff, mono_pushoutSection_of_isCompact_of_flat_left, isIso_pushoutSection_of_isQuasiSeparated_of_flat_right, isIso_pushoutSection_of_isAffineOpen

Theorems

NameKindAssumesProvesValidatesDepends On
flat_and_surjective_SpecMap_iff πŸ“–mathematicalβ€”Flat
Spec
Spec.map
Surjective
RingHom.FaithfullyFlat
CommRingCat.carrier
CommRingCat.commRing
CommRingCat.Hom.hom
β€”HasRingHomProperty.Spec_iff
Flat.instHasRingHomPropertyFlat
RingHom.FaithfullyFlat.iff_flat_and_comap_surjective
surjective_iff
flat_iff πŸ“–mathematicalβ€”Flat
RingHom.Flat
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
CommRingCat.commRing
CommRingCat.Hom.hom
Scheme.Hom.appLE
β€”β€”
isIso_pushoutSection_iff πŸ“–mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.IsIso
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
CategoryTheory.IsPushout
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.IsPushout.of_iso
CategoryTheory.IsPushout.of_hasPushout
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Iso.isIso_inv
isIso_pushoutSection_of_iSup_eq πŸ“–β€”CategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CategoryTheory.IsIso
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
CategoryTheory.Mono
β€”β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
LE.le.trans
inf_le_left
le_antisymm
iSup_le_iff
le_iSup
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.CompleteLattice.hasColimits_of_completeLattice
CategoryTheory.Limits.CompleteLattice.colimit_eq_iSup
inf_le_inf
Scheme.Hom.preimage_mono
le_refl
le_imp_le_of_le_of_le
Scheme.Hom.appLE_map
CategoryTheory.Category.assoc
CategoryTheory.Limits.pushout.hom_ext
CommRingCat.hom_ext
RingHom.ext
CategoryTheory.Limits.colimit.ΞΉ_desc_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Limits.colimit.ΞΉ_desc
Scheme.Hom.map_appLE
CommRingCat.Under.preservesFiniteLimits_of_flat
nonempty_fintype
CategoryTheory.Limits.PreservesLimit.preserves
TopCat.Presheaf.isSheaf_iff_isSheafPreservesLimitPairwiseIntersections
SheafedSpace.IsSheaf
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.comp_preservesLimit
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.preservesLimitsOfShapeOfPreservesFiniteLimits
CategoryTheory.preservesLimit_of_createsLimit_and_hasLimit
CommRingCat.hasLimit
small_subtype
small_Pi
Opposite.small
UnivLE.small
UnivLE.self
CategoryTheory.Limits.hasColimitsOfShape_of_hasFiniteColimits
CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot
iSup_inf_eq
Scheme.Hom.preimage_iSup
Scheme.Hom.preimage_inf
inf_inf_distrib_right
CategoryTheory.eqToHom_op
CategoryTheory.Functor.map_comp
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.IsIso.comp_isIso
Equiv.surjective
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.cancel_mono
CategoryTheory.NatTrans.naturality
CategoryTheory.IsIso.inv_hom_id_assoc
CategoryTheory.Limits.Cone.w
CategoryTheory.Limits.IsLimit.hom_ext
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.Limits.IsLimit.fac_assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.IsIso.inv_hom_id
CategoryTheory.Limits.pushout.desc.congr_simp
CategoryTheory.Under.homMk.congr_simp
isIso_pushoutSection_of_isAffineOpen πŸ“–mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
CategoryTheory.IsIso
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
isIso_pushoutSection_iff
CategoryTheory.IsPullback.unop
CategoryTheory.IsPullback.of_map_of_faithful
CategoryTheory.Limits.reflectsLimit_of_reflectsLimitsOfShape
CategoryTheory.Limits.ReflectsFiniteLimits.reflects
CategoryTheory.Limits.reflectsFiniteLimits_of_reflectsIsomorphisms
CategoryTheory.reflectsIsomorphisms_of_full_and_faithful
Spec.full
Spec.faithful
CategoryTheory.Limits.hasFiniteLimits_opposite
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.instIsRightAdjointOfMonadicRightAdjoint
IsAffine.of_isIso
Scheme.Pullback.instHasPullback
Scheme.Hom.isPullback_resLE
CategoryTheory.Iso.isIso_hom
instIsAffinePullbackSchemeOfIsAffineHom_1
isAffineHom_of_isAffine
CategoryTheory.IsPullback.of_iso
CategoryTheory.IsPullback.flip
LE.le.trans
le_rfl
Spec.map_comp
Scheme.Opens.toSpecΞ“_SpecMap_presheaf_map_assoc
Scheme.Opens.toSpecΞ“_naturality
Scheme.Hom.map_resLE_assoc
isIso_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat πŸ“–mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
IsCompact
SetLike.coe
TopologicalSpace.Opens.instSetLike
IsQuasiSeparated
CategoryTheory.IsIso
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.IsPullback.flip
inf_comm
isCompact_iff_finite_and_eq_biUnion_affineOpens
isOpen_iUnion
TopologicalSpace.Opens.is_open'
Set.iUnion_congr_Prop
Set.iUnion_coe_set
Set.Finite.to_subtype
isIso_pushoutSection_of_iSup_eq
iSup_subtype
isIso_pushoutSection_of_isQuasiSeparated_of_flat_left
mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat
LE.le.trans
inf_le_left
IsAffineOpen.isCompact
CategoryTheory.Limits.hasPushout_symmetry
CategoryTheory.isIso_comp_left_iff
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.pushout.hom_ext
CommRingCat.hom_ext
RingHom.ext
CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom_assoc
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom_assoc
isIso_pushoutSection_of_isQuasiSeparated_of_flat_left πŸ“–mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
IsCompact
SetLike.coe
TopologicalSpace.Opens.instSetLike
IsQuasiSeparated
CategoryTheory.IsIso
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.IsPullback.flip
inf_comm
isIso_pushoutSection_of_isQuasiSeparated_of_flat_right
CategoryTheory.Limits.hasPushout_symmetry
CategoryTheory.isIso_comp_left_iff
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.pushout.hom_ext
CommRingCat.hom_ext
RingHom.ext
CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom_assoc
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom_assoc
isIso_pushoutSection_of_isQuasiSeparated_of_flat_right πŸ“–mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
IsCompact
SetLike.coe
TopologicalSpace.Opens.instSetLike
IsQuasiSeparated
CategoryTheory.IsIso
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
isCompact_iff_finite_and_eq_biUnion_affineOpens
isOpen_iUnion
TopologicalSpace.Opens.is_open'
Set.iUnion_congr_Prop
Set.iUnion_coe_set
Set.Finite.to_subtype
isIso_pushoutSection_of_iSup_eq
iSup_subtype
isIso_pushoutSection_of_isAffineOpen
mono_pushoutSection_of_isCompact_of_flat_right
LE.le.trans
inf_le_left
IsAffineOpen.isCompact
Scheme.Hom.flat_appLE
mono_pushoutSection_of_iSup_eq πŸ“–β€”CategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CategoryTheory.Mono
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
β€”β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
inf_le_inf
Scheme.Hom.preimage_mono
le_iSup
le_refl
LE.le.trans
Scheme.Hom.appLE_map
TopCat.Presheaf.IsSheaf.section_ext
CommRingCat.hasLimits
CommRingCat.forget_preservesLimits
CommRingCat.forgetReflectIsos
SheafedSpace.IsSheaf
IsScalarTower.to_smulCommClass
IsScalarTower.right
Module.Flat.lTensor_preserves_injective_linearMap
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
nonempty_fintype
Algebra.to_smulCommClass
CategoryTheory.IsPushout.flip
CommRingCat.isPushout_tensorProduct
IsScalarTower.left
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Function.Injective.piMap
RingEquiv.injective
AlgEquiv.injective
Algebra.TensorProduct.ringHom_ext
CategoryTheory.IsPushout.inr_isoPushout_hom
RingHom.ext
CategoryTheory.Limits.colimit.ΞΉ_desc
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
CategoryTheory.IsPushout.inl_isoPushout_hom
CategoryTheory.Category.assoc
Scheme.Hom.map_appLE
Function.Injective.of_comp
CategoryTheory.Iso.hom_inv_id_apply
mono_pushoutSection_of_isCompact_of_flat_left πŸ“–mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
IsCompact
SetLike.coe
TopologicalSpace.Opens.instSetLike
CategoryTheory.Mono
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.IsPullback.flip
inf_comm
mono_pushoutSection_of_isCompact_of_flat_right
CategoryTheory.Limits.hasPushout_symmetry
CategoryTheory.mono_comp_iff_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.pushout.hom_ext
CommRingCat.hom_ext
RingHom.ext
CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom_assoc
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom_assoc
mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat πŸ“–mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
IsCompact
SetLike.coe
TopologicalSpace.Opens.instSetLike
CategoryTheory.Mono
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
isCompact_iff_finite_and_eq_biUnion_affineOpens
Set.Finite.to_subtype
mono_pushoutSection_of_iSup_eq
iSup_subtype
mono_pushoutSection_of_isCompact_of_flat_left
mono_pushoutSection_of_isCompact_of_flat_right πŸ“–mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
IsCompact
SetLike.coe
TopologicalSpace.Opens.instSetLike
CategoryTheory.Mono
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
isCompact_iff_finite_and_eq_biUnion_affineOpens
Set.Finite.to_subtype
mono_pushoutSection_of_iSup_eq
iSup_subtype
isIso_pushoutSection_of_isAffineOpen
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
Scheme.Hom.flat_appLE
mono_pushoutSection_of_isCompact_of_flat_right_of_ringHomFlat πŸ“–mathematicalCategoryTheory.IsPullback
Scheme
Scheme.instCategory
Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
IsCompact
SetLike.coe
TopologicalSpace.Opens.instSetLike
CategoryTheory.Mono
CategoryTheory.Limits.pushout
Opposite
CategoryTheory.Category.opposite
PresheafedSpace.presheaf
Opposite.op
Scheme.Hom.appLE
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingSpan
CategoryTheory.Limits.WidePushoutShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.Limits.span
pushoutSection
β€”CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
CommRingCat.Colimits.hasColimits_commRingCat
CategoryTheory.IsPullback.flip
inf_comm
mono_pushoutSection_of_isCompact_of_flat_left_of_ringHomFlat
CategoryTheory.Limits.hasPushout_symmetry
CategoryTheory.mono_comp_iff_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.pushout.hom_ext
CommRingCat.hom_ext
RingHom.ext
CategoryTheory.Limits.inl_comp_pushoutSymmetry_hom_assoc
CategoryTheory.Limits.colimit.ΞΉ_desc
CategoryTheory.Limits.inr_comp_pushoutSymmetry_hom_assoc

AlgebraicGeometry.Flat

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”AlgebraicGeometry.Flat
CategoryTheory.CategoryStruct.comp
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
β€”CategoryTheory.MorphismProperty.comp_mem
instIsStableUnderCompositionScheme
epi_of_flat_of_surjective πŸ“–mathematicalβ€”CategoryTheory.Epi
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
β€”CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.reflectsEpimorphisms_of_reflectsColimitsOfShape
CategoryTheory.Limits.ReflectsFiniteColimits.reflects
CategoryTheory.Limits.instReflectsFiniteColimitsOfReflectsColimits
CategoryTheory.Limits.fullyFaithful_reflectsColimits
AlgebraicGeometry.Scheme.instFullLocallyRingedSpaceForgetToLocallyRingedSpace
AlgebraicGeometry.Scheme.instFaithfulLocallyRingedSpaceForgetToLocallyRingedSpace
CategoryTheory.Limits.reflectsFiniteColimitsOfReflectsIsomorphisms
AlgebraicGeometry.LocallyRingedSpace.instReflectsIsomorphismsSheafedSpaceCommRingCatForgetToSheafedSpace
CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
AlgebraicGeometry.LocallyRingedSpace.instHasColimits
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
AlgebraicGeometry.LocallyRingedSpace.preservesColimits_forgetToSheafedSpace
AlgebraicGeometry.SheafedSpace.epi_of_base_surjective_of_stalk_mono
CommRingCat.Colimits.hasColimits_commRingCat
CommRingCat.hasLimits
CommRingCat.forget_preservesLimits
CommRingCat.FilteredColimits.forget_preservesFilteredColimits
CommRingCat.forgetReflectIsos
AlgebraicGeometry.Surjective.surj
CategoryTheory.ConcreteCategory.mono_of_injective
Module.FaithfullyFlat.of_flat_of_isLocalHom
AlgebraicGeometry.LocallyRingedSpace.instIsLocalRingCarrierStalkCommRingCatPresheaf
stalkMap
AlgebraicGeometry.LocallyRingedSpace.Hom.prop
RingHom.FaithfullyFlat.injective
flat_and_surjective_iff_faithfullyFlat_of_isAffine πŸ“–mathematicalβ€”AlgebraicGeometry.Flat
AlgebraicGeometry.Surjective
RingHom.FaithfullyFlat
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
AlgebraicGeometry.Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CommRingCat.commRing
CommRingCat.Hom.hom
AlgebraicGeometry.Scheme.Hom.appTop
β€”RingHom.FaithfullyFlat.iff_flat_and_comap_surjective
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
AlgebraicGeometry.instRespectsIsoSchemeSurjective
CategoryTheory.MorphismProperty.IsLocalAtSource.toRespects
AlgebraicGeometry.HasRingHomProperty.instIsZariskiLocalAtSource
instHasRingHomPropertyFlat
AlgebraicGeometry.HasRingHomProperty.Spec_iff
AlgebraicGeometry.surjective_iff
flat_appLE πŸ“–mathematicalAlgebraicGeometry.Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
RingHom.Flat
CommRingCat.carrier
Opposite
CategoryTheory.Category.opposite
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
CommRingCat.commRing
CommRingCat.Hom.hom
AlgebraicGeometry.Scheme.Hom.appLE
β€”β€”
flat_of_affine_subset πŸ“–mathematicalAlgebraicGeometry.Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
RingHom.Flat
CommRingCat.carrier
Opposite
CategoryTheory.Category.opposite
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
CommRingCat.commRing
CommRingCat.Hom.hom
AlgebraicGeometry.Scheme.Hom.appLE
β€”AlgebraicGeometry.Scheme.Hom.flat_appLE
iff_flat_stalkMap πŸ“–mathematicalβ€”AlgebraicGeometry.Flat
RingHom.Flat
CommRingCat.carrier
TopCat.Presheaf.stalk
CommRingCat
CommRingCat.instCategory
CommRingCat.Colimits.hasColimits_commRingCat
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.PresheafedSpace.presheaf
DFunLike.coe
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CommRingCat.commRing
CommRingCat.Hom.hom
AlgebraicGeometry.Scheme.Hom.stalkMap
β€”CommRingCat.Colimits.hasColimits_commRingCat
stalkMap
of_stalkMap
instDescScheme πŸ“–mathematicalAlgebraicGeometry.FlatCategoryTheory.Limits.sigmaObj
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
AlgebraicGeometry.Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
CategoryTheory.Limits.Sigma.desc
β€”AlgebraicGeometry.IsZariskiLocalAtSource.sigmaDesc
AlgebraicGeometry.HasRingHomProperty.instIsZariskiLocalAtSource
instHasRingHomPropertyFlat
instFstScheme πŸ“–mathematicalβ€”AlgebraicGeometry.Flat
CategoryTheory.Limits.pullback
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.Limits.pullback.fst
β€”CategoryTheory.MorphismProperty.pullback_fst
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
isStableUnderBaseChange
instHasRingHomPropertyFlat πŸ“–mathematicalβ€”AlgebraicGeometry.HasRingHomProperty
AlgebraicGeometry.Flat
RingHom.Flat
β€”RingHom.Flat.propertyIsLocal
CategoryTheory.MorphismProperty.ext
AlgebraicGeometry.flat_iff
AlgebraicGeometry.affineLocally_iff_forall_isAffineOpen
instIsMultiplicativeScheme πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsMultiplicative
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Flat
β€”instOfIsOpenImmersion
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.IsIso.id
instIsStableUnderCompositionScheme
instIsStableUnderCompositionScheme πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsStableUnderComposition
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Flat
β€”AlgebraicGeometry.HasRingHomProperty.stableUnderComposition
instHasRingHomPropertyFlat
RingHom.Flat.stableUnderComposition
instMorphismRestrict πŸ“–mathematicalβ€”AlgebraicGeometry.Flat
AlgebraicGeometry.Scheme.Opens.toScheme
CategoryTheory.Functor.obj
AlgebraicGeometry.Scheme.Opens
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.str
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
AlgebraicGeometry.morphismRestrict
β€”AlgebraicGeometry.IsZariskiLocalAtTarget.restrict
AlgebraicGeometry.HasRingHomProperty.instIsZariskiLocalAtTarget
instHasRingHomPropertyFlat
instOfIsOpenImmersion πŸ“–mathematicalβ€”AlgebraicGeometry.Flatβ€”AlgebraicGeometry.HasRingHomProperty.of_isOpenImmersion
instHasRingHomPropertyFlat
RingHom.Flat.containsIdentities
instOfSubsingletonCarrierCarrierCommRingCatOfIsIntegral πŸ“–mathematicalβ€”AlgebraicGeometry.Flatβ€”AlgebraicGeometry.instIsAffineOfFiniteOfDiscreteTopologyCarrierCarrierCommRingCat
Finite.of_subsingleton
Subsingleton.discreteTopology
CategoryTheory.MorphismProperty.cancel_right_of_respectsIso
CategoryTheory.MorphismProperty.IsLocalAtSource.toRespects
AlgebraicGeometry.HasRingHomProperty.instIsZariskiLocalAtSource
instHasRingHomPropertyFlat
CategoryTheory.Iso.isIso_hom
AlgebraicGeometry.IsZariskiLocalAtSource.iff_of_openCover
AlgebraicGeometry.Scheme.local_affine
AlgebraicGeometry.Spec.map_preimage
AlgebraicGeometry.HasRingHomProperty.Spec_iff
RingHom.Flat.of_isField
AlgebraicGeometry.isField_of_isIntegral_of_subsingleton
instResLE πŸ“–mathematicalAlgebraicGeometry.Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
AlgebraicGeometry.Flat
AlgebraicGeometry.Scheme.Opens.toScheme
AlgebraicGeometry.Scheme.Hom.resLE
β€”comp
instOfIsOpenImmersion
AlgebraicGeometry.instIsOpenImmersionHomOfLE
instMorphismRestrict
instSndScheme πŸ“–mathematicalβ€”AlgebraicGeometry.Flat
CategoryTheory.Limits.pullback
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.Limits.pullback.snd
β€”CategoryTheory.MorphismProperty.pullback_snd
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
isStableUnderBaseChange
isQuotientMap_of_surjective πŸ“–mathematicalβ€”Topology.IsQuotientMap
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
β€”Topology.isQuotientMap_iff
AlgebraicGeometry.Scheme.Hom.surjective
IsOpen.preimage
AlgebraicGeometry.Scheme.Hom.continuous
AlgebraicGeometry.Spec.map_surjective
Topology.IsQuotientMap.isOpen_preimage
PrimeSpectrum.isQuotientMap_of_generalizingMap
AlgebraicGeometry.surjective_iff
RingHom.Flat.generalizingMap_comap
AlgebraicGeometry.HasRingHomProperty.Spec_iff
instHasRingHomPropertyFlat
AlgebraicGeometry.QuasiCompact.compactSpace_of_compactSpace
AlgebraicGeometry.Scheme.compactSpace_of_isAffine
AlgebraicGeometry.isAffine_Spec
AlgebraicGeometry.Scheme.IsLocallyDirected.instHasColimit
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
AlgebraicGeometry.instIsAffineSigmaObjScheme
Finite.of_fintype
AlgebraicGeometry.instIsAffineXSchemeFiniteSubcover
AlgebraicGeometry.Scheme.isAffine_affineCover
comp
instOfIsOpenImmersion
CategoryTheory.Iso.isIso_inv
instDescScheme
AlgebraicGeometry.Scheme.instIsOpenImmersionF
AlgebraicGeometry.quasiCompact_comp
AlgebraicGeometry.instQuasiCompactOfIsAffineHom
AlgebraicGeometry.instIsAffineHomOfIsIsoScheme
AlgebraicGeometry.isAffineHom_of_isAffine
AlgebraicGeometry.instSurjectiveCompScheme
AlgebraicGeometry.instSurjectiveOfIsIsoScheme
AlgebraicGeometry.instSurjectiveDescIβ‚€SchemeF
CategoryTheory.Category.assoc
AlgebraicGeometry.Scheme.Hom.comp_base
TopCat.coe_comp
Set.preimage_comp
TopologicalSpace.IsOpenCover.isOpen_iff_inter
AlgebraicGeometry.Scheme.OpenCover.isOpenCover_opensRange
AlgebraicGeometry.Scheme.Hom.coe_opensRange
Set.image_preimage_eq_inter_range
Topology.IsOpenEmbedding.isOpenMap
AlgebraicGeometry.Scheme.Hom.isOpenEmbedding
AlgebraicGeometry.Scheme.Pullback.instHasPullback
instFstScheme
AlgebraicGeometry.instQuasiCompactFstScheme
AlgebraicGeometry.Surjective.instFstScheme
CategoryTheory.Limits.pullback.condition
AlgebraicGeometry.Scheme.local_affine
isStableUnderBaseChange πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsStableUnderBaseChange
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Flat
β€”AlgebraicGeometry.HasRingHomProperty.isStableUnderBaseChange
instHasRingHomPropertyFlat
RingHom.Flat.isStableUnderBaseChange
of_stalkMap πŸ“–mathematicalRingHom.Flat
CommRingCat.carrier
TopCat.Presheaf.stalk
CommRingCat
CommRingCat.instCategory
CommRingCat.Colimits.hasColimits_commRingCat
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.PresheafedSpace.presheaf
DFunLike.coe
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CommRingCat.commRing
CommRingCat.Hom.hom
AlgebraicGeometry.Scheme.Hom.stalkMap
AlgebraicGeometry.Flatβ€”CommRingCat.Colimits.hasColimits_commRingCat
AlgebraicGeometry.HasRingHomProperty.of_stalkMap
instHasRingHomPropertyFlat
RingHom.Flat.ofLocalizationPrime
stalkMap πŸ“–mathematicalβ€”RingHom.Flat
CommRingCat.carrier
TopCat.Presheaf.stalk
CommRingCat
CommRingCat.instCategory
CommRingCat.Colimits.hasColimits_commRingCat
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.PresheafedSpace.presheaf
DFunLike.coe
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CommRingCat.commRing
CommRingCat.Hom.hom
AlgebraicGeometry.Scheme.Hom.stalkMap
β€”AlgebraicGeometry.HasRingHomProperty.stalkMap
instHasRingHomPropertyFlat
RingHom.Flat.localRingHom
RingHom.instRingHomClass
Ideal.IsPrime.comap

AlgebraicGeometry.Scheme.Hom

Theorems

NameKindAssumesProvesValidatesDepends On
flat_appLE πŸ“–mathematicalAlgebraicGeometry.Scheme.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.Functor.obj
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.str
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
toLRSHom'
RingHom.Flat
CommRingCat.carrier
Opposite
CategoryTheory.Category.opposite
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
CommRingCat.commRing
CommRingCat.Hom.hom
appLE
β€”AlgebraicGeometry.Flat.flat_appLE

---

← Back to Index