Documentation Verification Report

FlatDescent

📁 Source: Mathlib/AlgebraicGeometry/Morphisms/FlatDescent.lean

Statistics

MetricCount
Definitions0
Theoremssurjective_descendsAlong_surjective_inf_flat_inf_quasicompact, descendsAlong_isOpenImmersion_surjective_inf_flat_inf_quasicompact', descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact, descendsAlong_universallyClosed_surjective_inf_flat_inf_quasicompact, descendsAlong_universallyInjective_surjective_inf_flat_inf_quasicompact, descendsAlong_universallyOpen_surjective_inf_flat_inf_quasicompact, instDescendsAlongSchemeMinMorphismPropertySurjectiveFlatLocallyOfFinitePresentationOfQuasiCompactOfIsZariskiLocalAtTarget, instFaithfulOverSchemePullbackOfSurjectiveOfFlatOfLocallyOfFinitePresentation, instFaithfulOverSchemePullbackOfSurjectiveOfFlatOfQuasiCompact
9
Total9

AlgebraicGeometry

Theorems

NameKindAssumesProvesValidatesDepends On
descendsAlong_isOpenImmersion_surjective_inf_flat_inf_quasicompact' 📖mathematicalCategoryTheory.MorphismProperty.DescendsAlong
Scheme
Scheme.instCategory
IsOpenImmersion
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
Surjective
Flat
QuasiCompact
CategoryTheory.MorphismProperty.DescendsAlong.mk'
isOpenImmersion_respectsIso
CategoryTheory.MorphismProperty.of_pullback_fst_of_descendsAlong
descendsAlong_universallyOpen_surjective_inf_flat_inf_quasicompact
UniversallyOpen.instOfIsOpenImmersion
IsOpenMap.isOpen_range
Scheme.Hom.isOpenMap
Scheme.Pullback.instHasPullback
Scheme.Opens.instIsOpenImmersionι
Scheme.Opens.range_ι
Set.instReflSubset
Scheme.Hom.injective
instUniversallyInjectiveOfMonoScheme
IsOpenImmersion.mono
IsOpenImmersion.lift_fac
isIso_iff_isOpenImmersion_and_surjective
CategoryTheory.Limits.hasPullbackVertPaste
CategoryTheory.Limits.pullbackLeftPullbackSndIso_hom_fst
IsOpenImmersion.comp
IsOpenImmersion.of_isIso
CategoryTheory.Iso.isIso_hom
IsOpenImmersion.of_comp
IsOpenImmersion.instFstScheme
Surjective.instFstScheme
descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact
CategoryTheory.MorphismProperty.pullback_snd
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf
Surjective.instIsStableUnderBaseChangeScheme
Flat.isStableUnderBaseChange
quasiCompact_isStableUnderBaseChange
descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact 📖mathematicalCategoryTheory.MorphismProperty.DescendsAlong
Scheme
Scheme.instCategory
CategoryTheory.MorphismProperty.isomorphisms
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
Surjective
Flat
QuasiCompact
IsZariskiLocalAtTarget.descendsAlong_inf_quasiCompact
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf
Surjective.instIsStableUnderBaseChangeScheme
Flat.isStableUnderBaseChange
CategoryTheory.MorphismProperty.IsStableUnderComposition.inf
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeSchemeSurjective
Flat.instIsStableUnderCompositionScheme
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.isomorphisms
inf_comm
inf_le_inf
le_rfl
IsLocalIso.le_of_isZariskiLocalAtSource
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
Flat.instIsMultiplicativeScheme
HasRingHomProperty.instIsZariskiLocalAtSource
Flat.instHasRingHomPropertyFlat
Scheme.instIsLocalAtTargetIsomorphismsZariskiPrecoverage
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.of_pullback_fst_of_descendsAlong
descendsAlong_universallyInjective_surjective_inf_flat_inf_quasicompact
instQuasiCompactOfIsAffineHom
isAffineHom_of_isAffine
isAffine_Spec
instUniversallyInjectiveOfMonoScheme
IsOpenImmersion.mono
IsOpenImmersion.of_isIso
Flat.surjective_descendsAlong_surjective_inf_flat_inf_quasicompact
instSurjectiveOfIsIsoScheme
descendsAlong_universallyOpen_surjective_inf_flat_inf_quasicompact
UniversallyOpen.instOfIsOpenImmersion
Scheme.Hom.continuous
Scheme.Hom.isOpenMap
Scheme.Hom.injective
Scheme.Hom.surjective
isAffineHom_of_isInducing
IsHomeomorph.isInducing
Topology.IsClosedEmbedding.isClosed_range
IsHomeomorph.isClosedEmbedding
isAffine_of_isAffineHom
Spec.map_surjective
of_pullback_fst_Spec_of_codescendsAlong
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms
RingHom.FaithfullyFlat.codescendsAlong_bijective
flat_and_surjective_SpecMap_iff
CategoryTheory.MorphismProperty.cancel_left_of_respectsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Limits.pullback.lift_fst
CategoryTheory.Limits.pullback.map_isIso
CategoryTheory.IsIso.id
descendsAlong_universallyClosed_surjective_inf_flat_inf_quasicompact 📖mathematicalCategoryTheory.MorphismProperty.DescendsAlong
Scheme
Scheme.instCategory
UniversallyClosed
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
Surjective
Flat
QuasiCompact
IsZariskiLocalAtTarget.descendsAlong_inf_quasiCompact
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf
Surjective.instIsStableUnderBaseChangeScheme
Flat.isStableUnderBaseChange
CategoryTheory.MorphismProperty.IsStableUnderComposition.inf
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeSchemeSurjective
Flat.instIsStableUnderCompositionScheme
universallyClosed_isStableUnderBaseChange
inf_comm
inf_le_inf
le_rfl
IsLocalIso.le_of_isZariskiLocalAtSource
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
Flat.instIsMultiplicativeScheme
HasRingHomProperty.instIsZariskiLocalAtSource
Flat.instHasRingHomPropertyFlat
universallyClosed_isZariskiLocalAtTarget
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.universally_mk'
instRespectsIsoSchemeTopologicallyIsClosedMap
CategoryTheory.Limits.pullback.condition
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
Scheme.Pullback.instHasPullbacks
CategoryTheory.IsPullback.instHasPullbackFst
Scheme.image_preimage_eq_of_isPullback
CategoryTheory.Limits.isPullback_map_snd_snd
Scheme.Hom.isClosedMap
universallyClosed_fst
IsClosed.preimage
Scheme.Hom.continuous
Topology.IsQuotientMap.isClosed_preimage
Flat.isQuotientMap_of_surjective
Flat.instSndScheme
instQuasiCompactSndScheme
instQuasiCompactOfIsAffineHom
isAffineHom_of_isAffine
isAffine_Spec
Surjective.instSndScheme
descendsAlong_universallyInjective_surjective_inf_flat_inf_quasicompact 📖mathematicalCategoryTheory.MorphismProperty.DescendsAlong
Scheme
Scheme.instCategory
UniversallyInjective
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
Surjective
Flat
QuasiCompact
Scheme.Pullback.instHasPullbacks
universallyInjective_eq_diagonal
CategoryTheory.MorphismProperty.instDescendsAlongDiagonalOfRespectsIsoOfIsStableUnderBaseChange
Flat.surjective_descendsAlong_surjective_inf_flat_inf_quasicompact
instRespectsIsoSchemeSurjective
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf
Surjective.instIsStableUnderBaseChangeScheme
Flat.isStableUnderBaseChange
quasiCompact_isStableUnderBaseChange
descendsAlong_universallyOpen_surjective_inf_flat_inf_quasicompact 📖mathematicalCategoryTheory.MorphismProperty.DescendsAlong
Scheme
Scheme.instCategory
UniversallyOpen
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
Surjective
Flat
QuasiCompact
IsZariskiLocalAtTarget.descendsAlong_inf_quasiCompact
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf
Surjective.instIsStableUnderBaseChangeScheme
Flat.isStableUnderBaseChange
CategoryTheory.MorphismProperty.IsStableUnderComposition.inf
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeSchemeSurjective
Flat.instIsStableUnderCompositionScheme
UniversallyOpen.instIsStableUnderBaseChangeScheme
inf_comm
inf_le_inf
le_rfl
IsLocalIso.le_of_isZariskiLocalAtSource
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
Flat.instIsMultiplicativeScheme
HasRingHomProperty.instIsZariskiLocalAtSource
Flat.instHasRingHomPropertyFlat
UniversallyOpen.instIsZariskiLocalAtTarget
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.universally_mk'
instRespectsIsoSchemeTopologicallyIsOpenMap
CategoryTheory.Limits.pullback.condition
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
Scheme.Pullback.instHasPullbacks
CategoryTheory.IsPullback.instHasPullbackFst
Scheme.image_preimage_eq_of_isPullback
CategoryTheory.Limits.isPullback_map_snd_snd
Scheme.Hom.isOpenMap
UniversallyOpen.fst
IsOpen.preimage
Scheme.Hom.continuous
Topology.IsQuotientMap.isOpen_preimage
Flat.isQuotientMap_of_surjective
Flat.instSndScheme
instQuasiCompactSndScheme
instQuasiCompactOfIsAffineHom
isAffineHom_of_isAffine
isAffine_Spec
Surjective.instSndScheme
instDescendsAlongSchemeMinMorphismPropertySurjectiveFlatLocallyOfFinitePresentationOfQuasiCompactOfIsZariskiLocalAtTarget 📖mathematicalCategoryTheory.MorphismProperty.DescendsAlong
Scheme
Scheme.instCategory
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
Surjective
Flat
LocallyOfFinitePresentation
IsZariskiLocalAtTarget.descendsAlong
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf
Surjective.instIsStableUnderBaseChangeScheme
Flat.isStableUnderBaseChange
locallyOfFinitePresentation_isStableUnderBaseChange
Scheme.Pullback.instHasPullback
IsOpenMap.exists_opens_image_eq_of_prespectralSpace
instPrespectralSpaceCarrierCarrierCommRingCat
Scheme.Hom.continuous
Scheme.Hom.isOpenMap
UniversallyOpen.of_flat
range_eq_univ
Set.instReflSubset
isOpen_univ
isCompact_univ
Scheme.compactSpace_of_isAffine
isAffine_Spec
CategoryTheory.MorphismProperty.of_isPullback_of_descendsAlong
CategoryTheory.IsPullback.paste_vert
CategoryTheory.IsPullback.of_hasPullback
Eq.ge
Set.mem_univ
Flat.comp
Flat.instOfIsOpenImmersion
Scheme.Opens.instIsOpenImmersionι
quasiCompact_iff_compactSpace
quasiSeparatedSpace_of_isAffine
isCompact_iff_compactSpace
IsZariskiLocalAtTarget.of_isPullback
CategoryTheory.IsPullback.flip
instFaithfulOverSchemePullbackOfSurjectiveOfFlatOfLocallyOfFinitePresentation 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Over
Scheme
Scheme.instCategory
CategoryTheory.instCategoryOver
CategoryTheory.Over.pullback
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.faithful_overPullback_of_isomorphisms_descendAlong
instDescendsAlongSchemeMinMorphismPropertySurjectiveFlatLocallyOfFinitePresentationOfQuasiCompactOfIsZariskiLocalAtTarget
descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact
Scheme.instIsLocalAtTargetIsomorphismsZariskiPrecoverage
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf
Surjective.instIsStableUnderBaseChangeScheme
Flat.isStableUnderBaseChange
locallyOfFinitePresentation_isStableUnderBaseChange
Scheme.Pullback.instHasPullbacks
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
instHasFiniteLimitsScheme
instFaithfulOverSchemePullbackOfSurjectiveOfFlatOfQuasiCompact 📖mathematicalCategoryTheory.Functor.Faithful
CategoryTheory.Over
Scheme
Scheme.instCategory
CategoryTheory.instCategoryOver
CategoryTheory.Over.pullback
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.faithful_overPullback_of_isomorphisms_descendAlong
descendsAlong_isomorphisms_surjective_inf_flat_inf_quasicompact
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.inf
Surjective.instIsStableUnderBaseChangeScheme
Flat.isStableUnderBaseChange
quasiCompact_isStableUnderBaseChange
Scheme.Pullback.instHasPullbacks
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
instHasFiniteLimitsScheme

AlgebraicGeometry.Flat

Theorems

NameKindAssumesProvesValidatesDepends On
surjective_descendsAlong_surjective_inf_flat_inf_quasicompact 📖mathematicalCategoryTheory.MorphismProperty.DescendsAlong
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Surjective
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
AlgebraicGeometry.Flat
AlgebraicGeometry.QuasiCompact
CategoryTheory.MorphismProperty.DescendsAlong.of_le
CategoryTheory.MorphismProperty.instDescendsAlongOfIsStableUnderBaseChangeOfHasOfPrecompPropertyOfRespectsRight
AlgebraicGeometry.Surjective.instIsStableUnderBaseChangeScheme
AlgebraicGeometry.instHasOfPrecompPropertySchemeSurjective
CategoryTheory.MorphismProperty.Respects.toRespectsRight
CategoryTheory.MorphismProperty.instRespectsOfIsStableUnderComposition
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
AlgebraicGeometry.instIsMultiplicativeSchemeSurjective
le_of_inf_eq'

---

← Back to Index