Documentation Verification Report

UniversallyClosed

πŸ“ Source: Mathlib/AlgebraicGeometry/Morphisms/UniversallyClosed.lean

Statistics

MetricCount
DefinitionsUniversallyClosed
1
TheoremsisClosedMap, isProperMap, of_universallyClosed_of_isDominant, of_comp_surjective, out, universally_isClosedMap, compactSpace_of_universallyClosed, instIsMultiplicativeSchemeUniversallyClosed, instQuasiCompactOfUniversallyClosed, instUniversallyClosedMorphismRestrict, instUniversallyClosedOfIsClosedImmersion, isClosedMap_isStableUnderComposition, universallyClosedTypeComp, universallyClosed_eq, universallyClosed_eq_universallySpecializing, universallyClosed_fst, universallyClosed_iff, universallyClosed_isStableUnderBaseChange, universallyClosed_isStableUnderComposition, universallyClosed_isZariskiLocalAtTarget, universallyClosed_respectsIso, universallyClosed_snd
22
Total23

AlgebraicGeometry

Definitions

NameCategoryTheorems
UniversallyClosed πŸ“–CompData
28 mathmath: descendsAlong_universallyClosed_surjective_inf_flat_inf_quasicompact, instHasOfPostcompPropertySchemeUniversallyClosedIsSeparated, universallyClosedTypeComp, UniversallyClosed.of_comp_surjective, IsIntegralHom.iff_universallyClosed_and_isAffineHom, UniversallyClosed.of_comp_of_isSeparated, universallyClosed_isZariskiLocalAtTarget, universallyClosed_isStableUnderBaseChange, universallyClosed_isStableUnderComposition, UniversallyClosed.of_valuativeCriterion, instUniversallyClosedToImage, isProper_iff, universallyClosed_fst, isProper_eq, Proj.instUniversallyClosedToSpecZeroOfFiniteTypeSubtypeMemOfNatNat, IsIntegralHom.instUniversallyClosed, universallyClosed_eq_universallySpecializing, instIsMultiplicativeSchemeUniversallyClosed, UniversallyClosed.eq_valuativeCriterion, IsProper.toUniversallyClosed, instUniversallyClosedOfIsClosedImmersion, instUniversallyClosedToNormalization, instUniversallyClosedMorphismRestrict, universallyClosed_iff, universallyClosed_respectsIso, IsIntegralHom.eq_universallyClosed_inf_isAffineHom, universallyClosed_eq, universallyClosed_snd

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_of_universallyClosed πŸ“–mathematicalβ€”CompactSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”Scheme.instIsOpenImmersionF
Scheme.Pullback.instHasPullback
TopologicalSpace.Opens.coe_iSup
isOpen_iUnion
IsOpen.inter
Continuous.isOpen_preimage
Scheme.Hom.continuous
TopologicalSpace.Opens.is_open'
IsClosed.isOpen_compl
Scheme.Hom.isClosedMap
universallyClosed_snd
MvPolynomial.aeval_X
NeZero.one
EuclideanDomain.toNontrivial
Scheme.instJointlySurjectivePrecoverage
Scheme.Cover.covers
TopologicalSpace.Opens.isBasis_iff_nbhd
PrimeSpectrum.isBasis_basic_opens
MvPolynomial.aeval_ite_mem_eq_self
subset_rfl
Set.instReflSubset
Set.iUnionβ‚‚_eq_univ_iff
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_forall_eq
Set.image_congr
Scheme.Pullback.exists_preimage_pullback
Unique.instSubsingleton
PrimeSpectrum.continuous_comap
PrimeSpectrum.basicOpen_zero
PrimeSpectrum.comap_basicOpen
Set.compl_iUnion
Finset.isCompact_biUnion
isCompact_range
Scheme.compactSpace_of_isAffine
Scheme.isAffine_affineCover
instIsMultiplicativeSchemeUniversallyClosed πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsMultiplicative
Scheme
Scheme.instCategory
UniversallyClosed
β€”instUniversallyClosedOfIsClosedImmersion
IsClosedImmersion.instOfIsIsoScheme
CategoryTheory.IsIso.id
universallyClosed_isStableUnderComposition
instQuasiCompactOfUniversallyClosed πŸ“–mathematicalβ€”QuasiCompactβ€”IsProperMap.isCompact_preimage
Scheme.Hom.isProperMap
instUniversallyClosedMorphismRestrict πŸ“–mathematicalβ€”UniversallyClosed
Scheme.Opens.toScheme
CategoryTheory.Functor.obj
Scheme.Opens
Preorder.smallCategory
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.Opens.map
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
morphismRestrict
β€”IsZariskiLocalAtTarget.restrict
universallyClosed_isZariskiLocalAtTarget
instUniversallyClosedOfIsClosedImmersion πŸ“–mathematicalβ€”UniversallyClosedβ€”universallyClosed_eq
CategoryTheory.MorphismProperty.of_isPullback
IsClosedImmersion.isStableUnderBaseChange
CategoryTheory.IsPullback.flip
Topology.IsClosedEmbedding.isClosedMap
Scheme.Hom.isClosedEmbedding
isClosedMap_isStableUnderComposition πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsStableUnderComposition
Scheme
Scheme.instCategory
topologically
IsClosedMap
β€”IsClosedMap.comp
universallyClosedTypeComp πŸ“–mathematicalβ€”UniversallyClosed
CategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
β€”CategoryTheory.MorphismProperty.comp_mem
universallyClosed_isStableUnderComposition
universallyClosed_eq πŸ“–mathematicalβ€”UniversallyClosed
CategoryTheory.MorphismProperty.universally
Scheme
Scheme.instCategory
topologically
IsClosedMap
β€”universallyClosed_iff
universallyClosed_eq_universallySpecializing πŸ“–mathematicalβ€”UniversallyClosed
CategoryTheory.MorphismProperty
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.universally
topologically
SpecializingMap
QuasiCompact
β€”CategoryTheory.MorphismProperty.universally_eq_iff
quasiCompact_isStableUnderBaseChange
CategoryTheory.MorphismProperty.universally_inf
le_antisymm
universallyClosed_isStableUnderBaseChange
CategoryTheory.MorphismProperty.universally_mono
IsClosedMap.specializingMap
Scheme.Hom.isClosedMap
instQuasiCompactOfUniversallyClosed
universallyClosed_eq
isClosedMap_iff_specializingMap
universallyClosed_fst πŸ“–mathematicalβ€”UniversallyClosed
CategoryTheory.Limits.pullback
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullback
CategoryTheory.Limits.pullback.fst
β€”CategoryTheory.MorphismProperty.pullback_fst
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
universallyClosed_isStableUnderBaseChange
universallyClosed_iff πŸ“–mathematicalβ€”UniversallyClosed
CategoryTheory.MorphismProperty.universally
Scheme
Scheme.instCategory
topologically
IsClosedMap
β€”β€”
universallyClosed_isStableUnderBaseChange πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsStableUnderBaseChange
Scheme
Scheme.instCategory
UniversallyClosed
β€”CategoryTheory.MorphismProperty.universally_isStableUnderBaseChange
universallyClosed_eq
universallyClosed_isStableUnderComposition πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsStableUnderComposition
Scheme
Scheme.instCategory
UniversallyClosed
β€”universallyClosed_eq
CategoryTheory.MorphismProperty.IsStableUnderComposition.universally
Scheme.Pullback.instHasPullbacks
isClosedMap_isStableUnderComposition
universallyClosed_isZariskiLocalAtTarget πŸ“–mathematicalβ€”IsZariskiLocalAtTarget
UniversallyClosed
β€”universallyClosed_eq
universally_isZariskiLocalAtTarget
TopologicalSpace.IsOpenCover.isClosedMap_iff_restrictPreimage
morphismRestrict_base
universallyClosed_respectsIso πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.RespectsIso
Scheme
Scheme.instCategory
UniversallyClosed
β€”CategoryTheory.MorphismProperty.universally_respectsIso
universallyClosed_eq
universallyClosed_snd πŸ“–mathematicalβ€”UniversallyClosed
CategoryTheory.Limits.pullback
Scheme
Scheme.instCategory
Scheme.Pullback.instHasPullback
CategoryTheory.Limits.pullback.snd
β€”CategoryTheory.MorphismProperty.pullback_snd
Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
universallyClosed_isStableUnderBaseChange

AlgebraicGeometry.Scheme.Hom

Theorems

NameKindAssumesProvesValidatesDepends On
isClosedMap πŸ“–mathematicalβ€”IsClosedMap
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
toLRSHom'
β€”AlgebraicGeometry.UniversallyClosed.universally_isClosedMap
CategoryTheory.IsPullback.of_id_snd
isProperMap πŸ“–mathematicalβ€”IsProperMap
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
toLRSHom'
β€”isProperMap_iff_isClosedMap_and_compact_fibers
continuous
isClosedMap
AlgebraicGeometry.Scheme.Pullback.instHasPullback
AlgebraicGeometry.compactSpace_of_universallyClosed
CommRingCat.Colimits.hasColimits_commRingCat
AlgebraicGeometry.universallyClosed_snd
AlgebraicGeometry.Scheme.range_fromSpecResidueField
AlgebraicGeometry.Scheme.Pullback.range_fst
isCompact_range

AlgebraicGeometry.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
of_universallyClosed_of_isDominant πŸ“–mathematicalβ€”AlgebraicGeometry.Surjectiveβ€”AlgebraicGeometry.surjective_iff
Set.range_eq_univ
DenseRange.closure_range
AlgebraicGeometry.Scheme.Hom.denseRange
IsClosed.closure_eq
IsClosedMap.isClosed_range
AlgebraicGeometry.Scheme.Hom.isClosedMap

AlgebraicGeometry.UniversallyClosed

Theorems

NameKindAssumesProvesValidatesDepends On
of_comp_surjective πŸ“–mathematicalβ€”AlgebraicGeometry.UniversallyClosedβ€”AlgebraicGeometry.Scheme.Pullback.instHasPullback
universally_isClosedMap
CategoryTheory.IsPullback.paste_horiz
CategoryTheory.IsPullback.of_hasPullback
IsClosedMap.of_comp_surjective
AlgebraicGeometry.Surjective.surj
CategoryTheory.MorphismProperty.pullback_fst
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
AlgebraicGeometry.Surjective.instIsStableUnderBaseChangeScheme
AlgebraicGeometry.Scheme.Hom.continuous
out πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.universally
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.topologically
IsClosedMap
β€”universally_isClosedMap
universally_isClosedMap πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.universally
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.topologically
IsClosedMap
β€”β€”

---

← Back to Index