Documentation Verification Report

PointsPi

📁 Source: Mathlib/AlgebraicGeometry/PointsPi.lean

Statistics

MetricCount
DefinitionspointsPi
1
Theoremsspan_eq_top_of_span_image_evalRingHom, eq_bot_of_comp_quotientMk_eq_sigmaSpec, eq_top_of_sigmaSpec_subset_of_isCompact, isIso_of_comp_eq_sigmaSpec, pointsPi_injective, pointsPi_surjective, pointsPi_surjective_of_isAffine
7
Total8

AlgebraicGeometry

Definitions

NameCategoryTheorems
pointsPi 📖CompOp
3 mathmath: pointsPi_surjective_of_isAffine, pointsPi_injective, pointsPi_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_of_comp_quotientMk_eq_sigmaSpec 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
CategoryTheory.Limits.sigmaObj
Spec
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
CommRingCat.of
HasQuotient.Quotient
Ideal
Pi.semiring
CommRingCat.carrier
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
Ideal.instHasQuotient_1
Pi.commRing
Ideal.Quotient.commRing
Spec.map
CommRingCat.ofHom
Pi.ring
CommRing.toRing
Ideal.instIsTwoSided_1
sigmaSpec
Bot.bot
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
Ideal.instIsTwoSided_1
le_bot_iff
ι_sigmaSpec
Spec.preimage_map
Spec.preimage_comp
Ideal.Quotient.eq_zero_iff_mem
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
eq_top_of_sigmaSpec_subset_of_isCompact 📖mathematicalSet
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Spec
CommRingCat.of
Pi.commRing
CommRingCat.carrier
CommRingCat.commRing
Set.instHasSubset
SetLike.coe
Scheme.Opens
TopologicalSpace.Opens.instSetLike
SheafedSpace.instTopologicalSpaceCarrierCarrier
Scheme.Hom.opensRange
CategoryTheory.Limits.sigmaObj
Scheme
Scheme.instCategory
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
sigmaSpec
instIsOpenImmersionSigmaSpec
IsCompact
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
instIsOpenImmersionSigmaSpec
PrimeSpectrum.isOpen_iff
TopologicalSpace.Opens.is_open'
IsCompact.elim_finite_subcover
PrimeSpectrum.basicOpen_eq_zeroLocus_compl
Set.iInter_coe_set
Set.iInter_congr_Prop
PrimeSpectrum.zeroLocus_iUnion₂
Set.biUnion_of_singleton
compl_compl
Finset.coe_map
Set.image_congr
Subtype.coe_preimage_self
Finset.finite_toSet
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.iUnion_coe_set
PrimeSpectrum.zeroLocus_empty_iff_eq_top
PrimeSpectrum.zeroLocus_span
PrimeSpectrum.preimage_comap_zeroLocus
Set.compl_univ_iff
Set.preimage_compl
Set.preimage_eq_univ_iff
IsOpenImmersion.comp
Scheme.IsLocallyDirected.instIsOpenImmersionι
ι_sigmaSpec
Scheme.Hom.opensRange.congr_simp
subset_refl
Set.instReflSubset
Scheme.Hom.opensRange_comp
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_subset_range
top_le_iff
LE.le.trans
Eq.ge
Ideal.span_eq_top_of_span_image_evalRingHom
Ideal.span_mono
isIso_of_comp_eq_sigmaSpec 📖mathematicalCategoryTheory.CategoryStruct.comp
Scheme
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
CategoryTheory.Limits.sigmaObj
Spec
Scheme.IsLocallyDirected.instHasColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Discrete.functor
IsOpenImmersion.of_isIso
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Functor.comp
CategoryTheory.types
Scheme.forget
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
CommRingCat.of
Pi.commRing
CommRingCat.carrier
CommRingCat.commRing
sigmaSpec
CategoryTheory.IsIsoScheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
univLE_of_max
instIsOpenImmersionSigmaSpec
eq_top_of_sigmaSpec_subset_of_isCompact
subset_coborder
Scheme.Hom.opensRange.congr_simp
Set.range_comp_subset_range
isCompact_range
Scheme.Hom.continuous
Scheme.topIso_hom
CategoryTheory.Iso.isIso_hom
Scheme.Hom.liftCoborder_ι
IsClosedImmersion.comp
instIsClosedImmersionLiftCoborder
IsClosedImmersion.instOfIsIsoScheme
Ideal.instIsTwoSided_1
IsClosedImmersion.Spec_iff
CategoryTheory.IsIso.comp_isIso
instIsIsoSchemeMapOfCommRingCat
CategoryTheory.Iso.isIso_inv
eq_bot_of_comp_quotientMk_eq_sigmaSpec
CategoryTheory.Category.assoc
pointsPi_injective 📖mathematicalQuiver.Hom
Scheme
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Spec
CommRingCat.of
Pi.commRing
CommRingCat.carrier
CommRingCat.commRing
pointsPi
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
instHasFiniteLimitsScheme
isIso_of_comp_eq_sigmaSpec
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
CategoryTheory.Limits.Sigma.hom_ext
ι_sigmaSpec_assoc
IsImmersion.instιScheme
instCompactSpaceCarrierCarrierCommRingCatEqualizerSchemeOfQuasiSeparatedSpace
Scheme.compactSpace_of_isAffine
isAffine_Spec
univLE_of_max
CategoryTheory.Limits.limit.lift_π
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Limits.equalizer.condition
pointsPi_surjective 📖mathematicalIsLocalRing
CommRingCat.carrier
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
Quiver.Hom
Scheme
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Spec
CommRingCat.of
Pi.commRing
pointsPi
Scheme.instIsOpenImmersionF
Scheme.instJointlySurjectivePrecoverage
Specializes.mem_open
Specializes.map
IsLocalRing.specializes_closedPoint
Scheme.Hom.continuous
TopologicalSpace.Opens.is_open'
Scheme.Cover.covers
pointsPi_surjective_of_isAffine
instIsAffineXSchemeFiniteSubcover
Scheme.isAffine_affineCover
Scheme.IsLocallyDirected.instHasColimit
IsOpenImmersion.of_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Discrete.instIsIso
CategoryTheory.instIsLocallyDirectedDiscrete
CategoryTheory.Discrete.instSubsingletonDiscreteHom
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
instIsIsoSchemeSigmaSpecOfFinite
Finite.of_fintype
pointsPi.eq_1
Spec.map_comp_assoc
CommRingCat.ofHom_comp
ι_sigmaSpec
CategoryTheory.Category.assoc
CategoryTheory.IsIso.hom_inv_id_assoc
CategoryTheory.Limits.Sigma.ι_desc
IsOpenImmersion.lift_fac
pointsPi_surjective_of_isAffine 📖mathematicalQuiver.Hom
Scheme
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Scheme.instCategory
Spec
CommRingCat.of
Pi.commRing
CommRingCat.carrier
CommRingCat.commRing
pointsPi
Spec.map_preimage

AlgebraicGeometry.Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
span_eq_top_of_span_image_evalRingHom 📖mathematicalIdeal.span
CommSemiring.toSemiring
CommRing.toCommSemiring
Set.image
DFunLike.coe
RingHom
Pi.nonAssocSemiring
Semiring.toNonAssocSemiring
RingHom.instFunLike
Pi.evalRingHom
Top.top
Ideal
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Pi.semiringSubtype.range_val
Finite.of_fintype
Finsupp.sum_fintype
MulZeroClass.zero_mul
Finset.sum_congr
Finset.sum_apply

---

← Back to Index