Documentation Verification Report

Topology

πŸ“ Source: Mathlib/AlgebraicGeometry/ProjectiveSpectrum/Topology.lean

Statistics

MetricCount
DefinitionsProjectiveSpectrum, asHomogeneousIdeal, basicOpen, instPartialOrder, top, vanishingIdeal, zariskiTopology, zeroLocus
8
Theoremsas_ideal_le_as_ideal, as_ideal_lt_as_ideal, basicOpen_eq_union_of_projection, basicOpen_eq_zeroLocus_compl, basicOpen_mul, basicOpen_mul_le_left, basicOpen_mul_le_right, basicOpen_one, basicOpen_pow, basicOpen_zero, coe_vanishingIdeal, ext, ext_iff, gc_homogeneousIdeal, gc_ideal, gc_set, homogeneousIdeal_le_vanishingIdeal_zeroLocus, ideal_le_vanishingIdeal_zeroLocus, instIsPrimeToIdealNatAsHomogeneousIdeal, isClosed_iff_zeroLocus, isClosed_zeroLocus, isOpen_basicOpen, isOpen_iff, isPrime, isTopologicalBasis_basic_opens, le_iff_mem_closure, mem_basicOpen, mem_coe_basicOpen, mem_compl_zeroLocus_iff_notMem, mem_vanishingIdeal, mem_zeroLocus, not_irrelevant_le, subset_vanishingIdeal_zeroLocus, subset_zeroLocus_iff_le_vanishingIdeal, subset_zeroLocus_iff_subset_vanishingIdeal, subset_zeroLocus_vanishingIdeal, sup_vanishingIdeal_le, union_zeroLocus, vanishingIdeal_anti_mono, vanishingIdeal_closure, vanishingIdeal_iUnion, vanishingIdeal_singleton, vanishingIdeal_union, vanishingIdeal_univ, zeroLocus_anti_mono, zeroLocus_anti_mono_homogeneousIdeal, zeroLocus_anti_mono_ideal, zeroLocus_bUnion, zeroLocus_bot, zeroLocus_empty, zeroLocus_empty_of_one_mem, zeroLocus_iSup_homogeneousIdeal, zeroLocus_iSup_ideal, zeroLocus_iUnion, zeroLocus_inf, zeroLocus_mul_homogeneousIdeal, zeroLocus_mul_ideal, zeroLocus_singleton_mul, zeroLocus_singleton_one, zeroLocus_singleton_pow, zeroLocus_singleton_zero, zeroLocus_span, zeroLocus_sup_homogeneousIdeal, zeroLocus_sup_ideal, zeroLocus_union, zeroLocus_univ, zeroLocus_vanishingIdeal_eq_closure
67
Total75

ProjectiveSpectrum

Definitions

NameCategoryTheorems
asHomogeneousIdeal πŸ“–CompOp
39 mathmath: mem_basicOpen, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply, ext_iff, vanishingIdeal_singleton, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_specStalkEquiv, AlgebraicGeometry.Proj.pow_apply, AlgebraicGeometry.Proj.mul_apply, mem_vanishingIdeal, AlgebraicGeometry.Proj.one_apply, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToΞ“_Ξ“ToStalk, AlgebraicGeometry.Proj.sub_apply, AlgebraicGeometry.stalkToFiberRingHom_homogeneousLocalizationToStalk, AlgebraicGeometry.Proj.mem_basicOpen, not_irrelevant_le, isPrime, AlgebraicGeometry.ProjectiveSpectrum.Proj.isLocalization_atPrime, AlgebraicGeometry.germ_comp_stalkToFiberRingHom, as_ideal_le_as_ideal, as_ideal_lt_as_ideal, mem_zeroLocus, AlgebraicGeometry.Proj.zero_apply, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.one_mem', AlgebraicGeometry.ProjectiveSpectrum.Proj.mk_mem_toSpec_base_apply, AlgebraicGeometry.Proj.ext_iff, AlgebraicGeometry.Proj.add_apply, AlgebraicGeometry.ProjIsoSpecTopComponent.ToSpec.mk_mem_carrier, instIsPrimeToIdealNatAsHomogeneousIdeal, AlgebraicGeometry.stalkToFiberRingHom_germ, AlgebraicGeometry.Proj.stalkIso'_germ, AlgebraicGeometry.ProjectiveSpectrum.Proj.stalkMap_toSpec, mem_compl_zeroLocus_iff_notMem, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_base_apply_eq_comap, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_germ, AlgebraicGeometry.mem_basicOpen_den, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.zero_mem', mem_coe_basicOpen, AlgebraicGeometry.Proj.res_apply, AlgebraicGeometry.Proj.stalkIso'_symm_mk, AlgebraicGeometry.homogeneousLocalizationToStalk_stalkToFiberRingHom
basicOpen πŸ“–CompOp
39 mathmath: AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_injective, mem_basicOpen, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_specStalkEquiv, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_fromSpec, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_preimage_basicOpen, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_hom_apply_asIdeal, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_surjective, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app_assoc, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToΞ“_Ξ“ToStalk, basicOpen_mul_le_left, AlgebraicGeometry.ProjectiveSpectrum.Proj.isLocalization_atPrime, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_stalkMap_toSpec_assoc, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_stalkMap_toSpec, AlgebraicGeometry.ProjIsoSpecTopComponent.fromSpec_toSpec, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_base_apply_eq, basicOpen_mul, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_base_isIso, AlgebraicGeometry.ProjectiveSpectrum.Proj.mk_mem_toSpec_base_apply, isTopologicalBasis_basic_opens, AlgebraicGeometry.ProjIsoSpecTopComponent.ToSpec.mk_mem_carrier, AlgebraicGeometry.ProjectiveSpectrum.Proj.isIso_toSpec, basicOpen_zero, basicOpen_eq_zeroLocus_compl, isOpen_basicOpen, basicOpen_eq_union_of_projection, basicOpen_pow, AlgebraicGeometry.ProjectiveSpectrum.Proj.stalkMap_toSpec, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_base_apply_eq_comap, AlgebraicGeometry.mem_basicOpen_den, mem_coe_basicOpen, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_preimage_basicOpen, basicOpen_one, basicOpen_mul_le_right, AlgebraicGeometry.ProjIsoSpecTopComponent.ToSpec.preimage_basicOpen, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec.image_basicOpen_eq_basicOpen, AlgebraicGeometry.ProjectiveSpectrum.Proj.toOpen_toSpec_val_c_app, AlgebraicGeometry.Proj.stalkIso'_symm_mk, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_bijective
instPartialOrder πŸ“–CompOp
3 mathmath: as_ideal_le_as_ideal, as_ideal_lt_as_ideal, le_iff_mem_closure
top πŸ“–CompOp
18 mathmath: AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToSection_apply, AlgebraicGeometry.Proj.pow_apply, AlgebraicGeometry.Proj.mul_apply, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.structurePresheafInCommRing_obj_carrier, AlgebraicGeometry.Proj.one_apply, AlgebraicGeometry.ProjectiveSpectrum.Proj.awayToΞ“_Ξ“ToStalk, AlgebraicGeometry.Proj.sub_apply, AlgebraicGeometry.stalkToFiberRingHom_homogeneousLocalizationToStalk, AlgebraicGeometry.Proj.zero_apply, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.one_mem', AlgebraicGeometry.Proj.ext_iff, AlgebraicGeometry.Proj.add_apply, AlgebraicGeometry.ProjectiveSpectrum.Proj.stalkMap_toSpec, AlgebraicGeometry.mem_basicOpen_den, AlgebraicGeometry.ProjectiveSpectrum.StructureSheaf.SectionSubring.zero_mem', AlgebraicGeometry.Proj.res_apply, AlgebraicGeometry.Proj.stalkIso'_symm_mk, AlgebraicGeometry.homogeneousLocalizationToStalk_stalkToFiberRingHom
vanishingIdeal πŸ“–CompOp
19 mathmath: vanishingIdeal_singleton, subset_zeroLocus_vanishingIdeal, gc_homogeneousIdeal, vanishingIdeal_closure, vanishingIdeal_iUnion, sup_vanishingIdeal_le, mem_vanishingIdeal, subset_zeroLocus_iff_le_vanishingIdeal, subset_zeroLocus_iff_subset_vanishingIdeal, gc_set, vanishingIdeal_anti_mono, homogeneousIdeal_le_vanishingIdeal_zeroLocus, gc_ideal, zeroLocus_vanishingIdeal_eq_closure, ideal_le_vanishingIdeal_zeroLocus, subset_vanishingIdeal_zeroLocus, coe_vanishingIdeal, vanishingIdeal_union, vanishingIdeal_univ
zariskiTopology πŸ“–CompOp
25 mathmath: mem_basicOpen, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_specStalkEquiv, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_preimage_basicOpen, vanishingIdeal_closure, basicOpen_mul_le_left, isClosed_zeroLocus, AlgebraicGeometry.ProjectiveSpectrum.Proj.isLocalization_atPrime, isOpen_iff, basicOpen_mul, isTopologicalBasis_basic_opens, isClosed_iff_zeroLocus, zeroLocus_vanishingIdeal_eq_closure, basicOpen_zero, basicOpen_eq_zeroLocus_compl, isOpen_basicOpen, basicOpen_eq_union_of_projection, AlgebraicGeometry.ProjectiveSpectrum.Proj.stalkMap_toSpec, AlgebraicGeometry.mem_basicOpen_den, mem_coe_basicOpen, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_preimage_basicOpen, basicOpen_one, basicOpen_mul_le_right, AlgebraicGeometry.ProjIsoSpecTopComponent.ToSpec.preimage_basicOpen, le_iff_mem_closure, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec.image_basicOpen_eq_basicOpen
zeroLocus πŸ“–CompOp
39 mathmath: zeroLocus_mul_ideal, subset_zeroLocus_vanishingIdeal, gc_homogeneousIdeal, zeroLocus_mul_homogeneousIdeal, zeroLocus_univ, zeroLocus_empty_of_one_mem, zeroLocus_anti_mono, subset_zeroLocus_iff_le_vanishingIdeal, union_zeroLocus, subset_zeroLocus_iff_subset_vanishingIdeal, isClosed_zeroLocus, mem_zeroLocus, gc_set, isOpen_iff, zeroLocus_singleton_pow, zeroLocus_singleton_one, zeroLocus_singleton_zero, homogeneousIdeal_le_vanishingIdeal_zeroLocus, zeroLocus_bot, zeroLocus_iUnion, zeroLocus_bUnion, gc_ideal, isClosed_iff_zeroLocus, zeroLocus_vanishingIdeal_eq_closure, zeroLocus_anti_mono_ideal, basicOpen_eq_zeroLocus_compl, ideal_le_vanishingIdeal_zeroLocus, zeroLocus_anti_mono_homogeneousIdeal, zeroLocus_sup_homogeneousIdeal, zeroLocus_empty, zeroLocus_iSup_homogeneousIdeal, mem_compl_zeroLocus_iff_notMem, zeroLocus_sup_ideal, subset_vanishingIdeal_zeroLocus, zeroLocus_union, zeroLocus_singleton_mul, zeroLocus_span, zeroLocus_iSup_ideal, zeroLocus_inf

Theorems

NameKindAssumesProvesValidatesDepends On
as_ideal_le_as_ideal πŸ“–mathematicalβ€”HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
asHomogeneousIdeal
ProjectiveSpectrum
instPartialOrder
β€”β€”
as_ideal_lt_as_ideal πŸ“–mathematicalβ€”HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
asHomogeneousIdeal
ProjectiveSpectrum
instPartialOrder
β€”β€”
basicOpen_eq_union_of_projection πŸ“–mathematicalβ€”basicOpen
iSup
TopologicalSpace.Opens
ProjectiveSpectrum
zariskiTopology
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Ring.toSemiring
CommRing.toRing
AddMonoidHom.instFunLike
GradedRing.proj
Nat.instAddMonoid
β€”TopologicalSpace.Opens.ext
Set.ext
mem_coe_basicOpen
SetLike.mem_coe
iSup.eq_1
TopologicalSpace.Opens.mem_sSup
Mathlib.Tactic.Contrapose.contraposeβ‚‚
AddSubmonoidClass.toZeroMemClass
DirectSum.sum_support_decompose
Ideal.sum_mem
mem_basicOpen
HomogeneousSubmodule.is_homogeneous'
basicOpen_eq_zeroLocus_compl πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Opens
ProjectiveSpectrum
zariskiTopology
TopologicalSpace.Opens.instSetLike
basicOpen
Compl.compl
Set
Set.instCompl
zeroLocus
Set.instSingletonSet
β€”Set.ext
basicOpen_mul πŸ“–mathematicalβ€”basicOpen
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
TopologicalSpace.Opens
ProjectiveSpectrum
zariskiTopology
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Opens.instCompleteLattice
β€”TopologicalSpace.Opens.ext
basicOpen_eq_zeroLocus_compl
zeroLocus_singleton_mul
Set.compl_union
basicOpen_mul_le_left πŸ“–mathematicalβ€”TopologicalSpace.Opens
ProjectiveSpectrum
zariskiTopology
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
basicOpen
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”basicOpen_mul
inf_le_left
basicOpen_mul_le_right πŸ“–mathematicalβ€”TopologicalSpace.Opens
ProjectiveSpectrum
zariskiTopology
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
basicOpen
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”basicOpen_mul
inf_le_right
basicOpen_one πŸ“–mathematicalβ€”basicOpen
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Top.top
TopologicalSpace.Opens
ProjectiveSpectrum
zariskiTopology
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”TopologicalSpace.Opens.ext
basicOpen_eq_zeroLocus_compl
zeroLocus_singleton_one
Set.compl_empty
basicOpen_pow πŸ“–mathematicalβ€”basicOpen
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”TopologicalSpace.Opens.ext
basicOpen_eq_zeroLocus_compl
zeroLocus_singleton_pow
basicOpen_zero πŸ“–mathematicalβ€”basicOpen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Bot.bot
TopologicalSpace.Opens
ProjectiveSpectrum
zariskiTopology
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
HeytingAlgebra.toOrderBot
β€”TopologicalSpace.Opens.ext
basicOpen_eq_zeroLocus_compl
zeroLocus_singleton_zero
Set.compl_univ
coe_vanishingIdeal πŸ“–mathematicalβ€”SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
vanishingIdeal
setOf
β€”Set.ext
vanishingIdeal.eq_1
SetLike.mem_coe
HomogeneousIdeal.mem_iff
HomogeneousIdeal.toIdeal_iInf
Submodule.mem_iInf
ext πŸ“–β€”asHomogeneousIdealβ€”β€”Nat.instCanonicallyOrderedAdd
ext_iff πŸ“–mathematicalβ€”asHomogeneousIdealβ€”ext
gc_homogeneousIdeal πŸ“–mathematicalβ€”GaloisConnection
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
OrderDual
Set
ProjectiveSpectrum
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
OrderDual.instPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
zeroLocus
SetLike.coe
HomogeneousIdeal.setLike
vanishingIdeal
β€”subset_zeroLocus_iff_le_vanishingIdeal
gc_ideal πŸ“–mathematicalβ€”GaloisConnection
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
OrderDual
Set
ProjectiveSpectrum
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
OrderDual.instPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
zeroLocus
SetLike.coe
Submodule.setLike
HomogeneousIdeal.toIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
vanishingIdeal
β€”subset_zeroLocus_iff_le_vanishingIdeal
gc_set πŸ“–mathematicalβ€”GaloisConnection
Set
OrderDual
ProjectiveSpectrum
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
OrderDual.instPreorder
zeroLocus
SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
vanishingIdeal
β€”GaloisInsertion.gc
zeroLocus_span
GaloisConnection.compose
gc_ideal
homogeneousIdeal_le_vanishingIdeal_zeroLocus πŸ“–mathematicalβ€”HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
vanishingIdeal
zeroLocus
SetLike.coe
HomogeneousIdeal.setLike
β€”GaloisConnection.le_u_l
gc_homogeneousIdeal
ideal_le_vanishingIdeal_zeroLocus πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
HomogeneousIdeal.toIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
vanishingIdeal
zeroLocus
SetLike.coe
Submodule.setLike
β€”GaloisConnection.le_u_l
gc_ideal
instIsPrimeToIdealNatAsHomogeneousIdeal πŸ“–mathematicalβ€”Ideal.IsPrime
Ring.toSemiring
CommRing.toRing
HomogeneousIdeal.toIdeal
Nat.instAddMonoid
asHomogeneousIdeal
β€”isPrime
isClosed_iff_zeroLocus πŸ“–mathematicalβ€”IsClosed
ProjectiveSpectrum
zariskiTopology
zeroLocus
β€”isOpen_compl_iff
isOpen_iff
compl_compl
isClosed_zeroLocus πŸ“–mathematicalβ€”IsClosed
ProjectiveSpectrum
zariskiTopology
zeroLocus
β€”isClosed_iff_zeroLocus
isOpen_basicOpen πŸ“–mathematicalβ€”IsOpen
ProjectiveSpectrum
zariskiTopology
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
basicOpen
β€”TopologicalSpace.Opens.isOpen
isOpen_iff πŸ“–mathematicalβ€”IsOpen
ProjectiveSpectrum
zariskiTopology
Compl.compl
Set
Set.instCompl
zeroLocus
β€”β€”
isPrime πŸ“–mathematicalβ€”Ideal.IsPrime
Ring.toSemiring
CommRing.toRing
HomogeneousIdeal.toIdeal
Nat.instAddMonoid
asHomogeneousIdeal
β€”β€”
isTopologicalBasis_basic_opens πŸ“–mathematicalβ€”TopologicalSpace.IsTopologicalBasis
ProjectiveSpectrum
zariskiTopology
Set.range
Set
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
basicOpen
β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
isOpen_basicOpen
Set.not_subset
mem_zeroLocus
Set.mem_compl_iff
compl_compl
Set.compl_subset_compl
basicOpen_eq_zeroLocus_compl
zeroLocus_anti_mono
Set.singleton_subset_iff
le_iff_mem_closure πŸ“–mathematicalβ€”ProjectiveSpectrum
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.instMembership
closure
zariskiTopology
Set.instSingletonSet
β€”as_ideal_le_as_ideal
zeroLocus_vanishingIdeal_eq_closure
mem_zeroLocus
vanishingIdeal_singleton
instIsConcreteLE
mem_basicOpen πŸ“–mathematicalβ€”ProjectiveSpectrum
TopologicalSpace.Opens
zariskiTopology
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
basicOpen
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
asHomogeneousIdeal
β€”β€”
mem_coe_basicOpen πŸ“–mathematicalβ€”ProjectiveSpectrum
Set
Set.instMembership
SetLike.coe
TopologicalSpace.Opens
zariskiTopology
TopologicalSpace.Opens.instSetLike
basicOpen
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
SetLike.instMembership
HomogeneousIdeal.setLike
asHomogeneousIdeal
β€”β€”
mem_compl_zeroLocus_iff_notMem πŸ“–mathematicalβ€”ProjectiveSpectrum
Set
Set.instMembership
Compl.compl
Set.instCompl
zeroLocus
Set.instSingletonSet
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
SetLike.instMembership
HomogeneousIdeal.setLike
asHomogeneousIdeal
β€”Set.mem_compl_iff
mem_zeroLocus
Set.singleton_subset_iff
mem_vanishingIdeal πŸ“–mathematicalβ€”HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
SetLike.instMembership
HomogeneousIdeal.setLike
vanishingIdeal
asHomogeneousIdeal
β€”SetLike.mem_coe
coe_vanishingIdeal
Set.mem_setOf_eq
mem_zeroLocus πŸ“–mathematicalβ€”ProjectiveSpectrum
Set
Set.instMembership
zeroLocus
Set.instHasSubset
SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
asHomogeneousIdeal
β€”β€”
not_irrelevant_le πŸ“–mathematicalβ€”HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
AddCommMonoid.toAddMonoid
Nat.instAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
HomogeneousIdeal.irrelevant
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
asHomogeneousIdeal
β€”β€”
subset_vanishingIdeal_zeroLocus πŸ“–mathematicalβ€”Set
Set.instHasSubset
SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
vanishingIdeal
zeroLocus
β€”GaloisConnection.le_u_l
gc_set
subset_zeroLocus_iff_le_vanishingIdeal πŸ“–mathematicalβ€”Set
ProjectiveSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
HomogeneousIdeal.toIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
vanishingIdeal
β€”mem_vanishingIdeal
mem_zeroLocus
le_trans
subset_zeroLocus_iff_subset_vanishingIdeal πŸ“–mathematicalβ€”Set
ProjectiveSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
vanishingIdeal
β€”gc_set
subset_zeroLocus_vanishingIdeal πŸ“–mathematicalβ€”Set
ProjectiveSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
vanishingIdeal
β€”GaloisConnection.l_u_le
gc_ideal
sup_vanishingIdeal_le πŸ“–mathematicalβ€”HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
HomogeneousIdeal.instMax
vanishingIdeal
Set
ProjectiveSpectrum
Set.instInter
β€”HomogeneousIdeal.mem_iff
HomogeneousIdeal.toIdeal_sup
mem_vanishingIdeal
Submodule.mem_sup
Submodule.add_mem
union_zeroLocus πŸ“–mathematicalβ€”Set
ProjectiveSpectrum
Set.instUnion
zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instMin
Ideal.span
β€”zeroLocus_inf
zeroLocus_span
vanishingIdeal_anti_mono πŸ“–mathematicalSet
ProjectiveSpectrum
Set.instHasSubset
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
vanishingIdeal
β€”GaloisConnection.monotone_u
gc_ideal
vanishingIdeal_closure πŸ“–mathematicalβ€”vanishingIdeal
closure
ProjectiveSpectrum
zariskiTopology
β€”GaloisConnection.u_l_u_eq_u
gc_ideal
HomogeneousIdeal.ext
zeroLocus_vanishingIdeal_eq_closure
vanishingIdeal_iUnion πŸ“–mathematicalβ€”vanishingIdeal
Set.iUnion
ProjectiveSpectrum
iInf
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.instInfSet
β€”HomogeneousIdeal.toIdeal_injective
HomogeneousIdeal.toIdeal_iInf
GaloisConnection.u_iInf
gc_ideal
vanishingIdeal_singleton πŸ“–mathematicalβ€”vanishingIdeal
ProjectiveSpectrum
Set
Set.instSingletonSet
asHomogeneousIdeal
β€”iInf_congr_Prop
iInf_iInf_eq_left
vanishingIdeal_union πŸ“–mathematicalβ€”vanishingIdeal
Set
ProjectiveSpectrum
Set.instUnion
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.instMin
β€”HomogeneousIdeal.ext
GaloisConnection.u_inf
gc_ideal
vanishingIdeal_univ πŸ“–mathematicalβ€”vanishingIdeal
Set
ProjectiveSpectrum
Set.instEmptyCollection
Top.top
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.instTop
β€”GaloisConnection.u_top
gc_ideal
zeroLocus_anti_mono πŸ“–mathematicalSet
Set.instHasSubset
ProjectiveSpectrum
zeroLocus
β€”GaloisConnection.monotone_l
gc_set
zeroLocus_anti_mono_homogeneousIdeal πŸ“–mathematicalHomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderHomogeneousIdeal
Set
ProjectiveSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
HomogeneousIdeal.setLike
β€”GaloisConnection.monotone_l
gc_homogeneousIdeal
zeroLocus_anti_mono_ideal πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set
ProjectiveSpectrum
Set.instHasSubset
zeroLocus
SetLike.coe
Submodule.setLike
β€”GaloisConnection.monotone_l
gc_ideal
zeroLocus_bUnion πŸ“–mathematicalβ€”zeroLocus
Set.iUnion
Set
Set.instMembership
Set.iInter
ProjectiveSpectrum
β€”zeroLocus_iUnion
zeroLocus_bot πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Bot.bot
Submodule.instBot
Set.univ
ProjectiveSpectrum
β€”GaloisConnection.l_bot
gc_ideal
zeroLocus_empty πŸ“–mathematicalβ€”zeroLocus
Set
Set.instEmptyCollection
Set.univ
ProjectiveSpectrum
β€”GaloisConnection.l_bot
gc_set
zeroLocus_empty_of_one_mem πŸ“–mathematicalSet
Set.instMembership
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
zeroLocus
ProjectiveSpectrum
Set.instEmptyCollection
β€”Set.eq_empty_iff_forall_notMem
Ideal.IsPrime.ne_top
instIsPrimeToIdealNatAsHomogeneousIdeal
Ideal.eq_top_iff_one
zeroLocus_iSup_homogeneousIdeal πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
iSup
HomogeneousIdeal.instSupSet
Set.iInter
ProjectiveSpectrum
β€”GaloisConnection.l_iSup
gc_homogeneousIdeal
zeroLocus_iSup_ideal πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Set.iInter
ProjectiveSpectrum
β€”GaloisConnection.l_iSup
gc_ideal
zeroLocus_iUnion πŸ“–mathematicalβ€”zeroLocus
Set.iUnion
Set.iInter
ProjectiveSpectrum
β€”GaloisConnection.l_iSup
gc_set
zeroLocus_inf πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instMin
Set
ProjectiveSpectrum
Set.instUnion
β€”Set.ext
Ideal.IsPrime.inf_le
isPrime
zeroLocus_mul_homogeneousIdeal πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
instMulHomogeneousIdeal
CommRing.toCommSemiring
Set
ProjectiveSpectrum
Set.instUnion
β€”Set.ext
Ideal.IsPrime.mul_le
isPrime
zeroLocus_mul_ideal πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.mul
IsScalarTower.right
Algebra.id
Set
ProjectiveSpectrum
Set.instUnion
β€”Set.ext
IsScalarTower.right
Ideal.IsPrime.mul_le
isPrime
zeroLocus_singleton_mul πŸ“–mathematicalβ€”zeroLocus
Set
Set.instSingletonSet
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ProjectiveSpectrum
Set.instUnion
β€”Set.ext
Ideal.IsPrime.mul_mem_iff_mem_or_mem
Ideal.instIsTwoSided_1
isPrime
zeroLocus_singleton_one πŸ“–mathematicalβ€”zeroLocus
Set
Set.instSingletonSet
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ProjectiveSpectrum
Set.instEmptyCollection
β€”zeroLocus_empty_of_one_mem
Set.mem_singleton
zeroLocus_singleton_pow πŸ“–mathematicalβ€”zeroLocus
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Set.ext
Ideal.IsPrime.pow_mem_iff_mem
isPrime
zeroLocus_singleton_zero πŸ“–mathematicalβ€”zeroLocus
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Set.univ
ProjectiveSpectrum
β€”zeroLocus_bot
zeroLocus_span πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
β€”Set.ext
GaloisInsertion.gc
zeroLocus_sup_homogeneousIdeal πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
HomogeneousIdeal.instMax
Set
ProjectiveSpectrum
Set.instInter
β€”GaloisConnection.l_sup
gc_homogeneousIdeal
zeroLocus_sup_ideal πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
SemilatticeSup.toMax
IdemSemiring.toSemilatticeSup
Submodule.idemSemiring
Algebra.id
Set
ProjectiveSpectrum
Set.instInter
β€”GaloisConnection.l_sup
gc_ideal
zeroLocus_union πŸ“–mathematicalβ€”zeroLocus
Set
Set.instUnion
ProjectiveSpectrum
Set.instInter
β€”GaloisConnection.l_sup
gc_set
zeroLocus_univ πŸ“–mathematicalβ€”zeroLocus
Set.univ
Set
ProjectiveSpectrum
Set.instEmptyCollection
β€”zeroLocus_empty_of_one_mem
Set.mem_univ
zeroLocus_vanishingIdeal_eq_closure πŸ“–mathematicalβ€”zeroLocus
SetLike.coe
HomogeneousIdeal
Ring.toSemiring
CommRing.toRing
Nat.instAddMonoid
HomogeneousIdeal.setLike
vanishingIdeal
closure
ProjectiveSpectrum
zariskiTopology
β€”Set.Subset.antisymm
isClosed_iff_zeroLocus
Set.Subset.trans
subset_zeroLocus_iff_subset_vanishingIdeal
IsClosed.closure_subset_iff
isClosed_zeroLocus
subset_zeroLocus_vanishingIdeal

(root)

Definitions

NameCategoryTheorems
ProjectiveSpectrum πŸ“–CompData
61 mathmath: ProjectiveSpectrum.mem_basicOpen, ProjectiveSpectrum.vanishingIdeal_singleton, AlgebraicGeometry.ProjectiveSpectrum.Proj.toStalk_specStalkEquiv, ProjectiveSpectrum.zeroLocus_mul_ideal, ProjectiveSpectrum.subset_zeroLocus_vanishingIdeal, ProjectiveSpectrum.gc_homogeneousIdeal, AlgebraicGeometry.ProjectiveSpectrum.Proj.toSpec_preimage_basicOpen, ProjectiveSpectrum.zeroLocus_mul_homogeneousIdeal, ProjectiveSpectrum.vanishingIdeal_closure, ProjectiveSpectrum.zeroLocus_univ, ProjectiveSpectrum.vanishingIdeal_iUnion, ProjectiveSpectrum.zeroLocus_empty_of_one_mem, ProjectiveSpectrum.sup_vanishingIdeal_le, ProjectiveSpectrum.zeroLocus_anti_mono, ProjectiveSpectrum.subset_zeroLocus_iff_le_vanishingIdeal, ProjectiveSpectrum.basicOpen_mul_le_left, ProjectiveSpectrum.union_zeroLocus, ProjectiveSpectrum.subset_zeroLocus_iff_subset_vanishingIdeal, ProjectiveSpectrum.isClosed_zeroLocus, AlgebraicGeometry.ProjectiveSpectrum.Proj.isLocalization_atPrime, ProjectiveSpectrum.as_ideal_le_as_ideal, ProjectiveSpectrum.as_ideal_lt_as_ideal, ProjectiveSpectrum.mem_zeroLocus, ProjectiveSpectrum.gc_set, ProjectiveSpectrum.isOpen_iff, ProjectiveSpectrum.zeroLocus_singleton_one, ProjectiveSpectrum.zeroLocus_singleton_zero, ProjectiveSpectrum.basicOpen_mul, ProjectiveSpectrum.zeroLocus_bot, ProjectiveSpectrum.zeroLocus_iUnion, ProjectiveSpectrum.zeroLocus_bUnion, ProjectiveSpectrum.isTopologicalBasis_basic_opens, ProjectiveSpectrum.gc_ideal, ProjectiveSpectrum.isClosed_iff_zeroLocus, ProjectiveSpectrum.zeroLocus_vanishingIdeal_eq_closure, ProjectiveSpectrum.zeroLocus_anti_mono_ideal, ProjectiveSpectrum.basicOpen_zero, ProjectiveSpectrum.basicOpen_eq_zeroLocus_compl, ProjectiveSpectrum.isOpen_basicOpen, ProjectiveSpectrum.basicOpen_eq_union_of_projection, ProjectiveSpectrum.zeroLocus_anti_mono_homogeneousIdeal, ProjectiveSpectrum.zeroLocus_sup_homogeneousIdeal, ProjectiveSpectrum.zeroLocus_empty, AlgebraicGeometry.ProjectiveSpectrum.Proj.stalkMap_toSpec, ProjectiveSpectrum.zeroLocus_iSup_homogeneousIdeal, ProjectiveSpectrum.mem_compl_zeroLocus_iff_notMem, AlgebraicGeometry.mem_basicOpen_den, ProjectiveSpectrum.zeroLocus_sup_ideal, ProjectiveSpectrum.mem_coe_basicOpen, ProjectiveSpectrum.zeroLocus_union, ProjectiveSpectrum.zeroLocus_singleton_mul, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec_preimage_basicOpen, ProjectiveSpectrum.basicOpen_one, ProjectiveSpectrum.zeroLocus_iSup_ideal, ProjectiveSpectrum.basicOpen_mul_le_right, ProjectiveSpectrum.zeroLocus_inf, AlgebraicGeometry.ProjIsoSpecTopComponent.ToSpec.preimage_basicOpen, ProjectiveSpectrum.le_iff_mem_closure, AlgebraicGeometry.ProjIsoSpecTopComponent.toSpec.image_basicOpen_eq_basicOpen, ProjectiveSpectrum.vanishingIdeal_union, ProjectiveSpectrum.vanishingIdeal_univ

---

← Back to Index