Documentation Verification Report

Properties

πŸ“ Source: Mathlib/AlgebraicGeometry/Properties.lean

Statistics

MetricCount
DefinitionsIsReduced, instOrderTopCarrierCarrierCommRingCatOfIsIntegral
2
Theoremscomponent_integral, nonempty, of_isIso, component_reduced, of_openCover, component_nontrivial, affine_isIntegral_iff, affine_isReduced_iff, basicOpen_eq_bot_iff, eq_zero_of_basicOpen_eq_bot, instIrreducibleSpaceCarrierCarrierCommRingCatSpecOfIsDomainCarrier, instIsClosedUnderIsomorphismsSchemeIrreducibleSpaceCarrierCarrierCommRingCat, instIsDomainCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopOfIsIntegral, instIsIntegralSpecOfIsDomainCarrier, instIsReducedSpecOfIsReducedCarrier, instIsReducedToScheme, instPrespectralSpaceCarrierCarrierCommRingCat, instQuasiSoberCarrierCarrierCommRingCat, instT0SpaceCarrierCarrierCommRingCat, irreducibleSpace_of_isIntegral, isField_of_isIntegral_of_subsingleton, isField_stalk_of_closure_mem_irreducibleComponents, isIntegral_iff_irreducibleSpace_and_isReduced, isIntegral_of_irreducibleSpace_of_isReduced, isIntegral_of_isAffine_of_isDomain, isIntegral_of_isOpenImmersion, isReduced_of_isAffine_isReduced, isReduced_of_isIntegral, isReduced_of_isOpenImmersion, isReduced_of_isReduced_stalk, isReduced_stalk_of_isReduced, map_injective_of_isIntegral, reduce_to_affine_global, reduce_to_affine_nbhd
34
Total36

AlgebraicGeometry

Definitions

NameCategoryTheorems
IsReduced πŸ“–CompData
20 mathmath: instIsReducedPullbackSchemeOfGeometricallyReducedOfFlatOfIsLocallyNoetherian, IsSchemeTheoreticallyDominant.isReduced, GeometricallyReduced.isReduced_of_flat_of_finite_irreducibleComponents, instIsReducedFiberOfGeometricallyReduced, instIsReducedSpecOfIsReducedCarrier, geometricallyReduced_iff, GeometricallyReduced.isReduced_of_flat_of_isLocallyNoetherian, isReduced_of_isIntegral, Scheme.PartialMap.instIsReducedToScheme, isIntegral_iff_irreducibleSpace_and_isReduced, instIsReducedToScheme, isReduced_of_isOpenImmersion, GeometricallyReduced.geometrically_isReduced, isReduced_of_isReduced_stalk, isReduced_of_isAffine_isReduced, instIsReducedToScheme_1, Scheme.Hom.instIsReducedNormalization, instIsReducedPullbackSchemeOfGeometricallyReducedOfFlatOfIsLocallyNoetherian_1, GeometricallyReduced.eq_geometrically, affine_isReduced_iff
instOrderTopCarrierCarrierCommRingCatOfIsIntegral πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
affine_isIntegral_iff πŸ“–mathematicalβ€”IsIntegral
Spec
IsDomain
CommRingCat.carrier
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”MulEquiv.isDomain
instIsDomainCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopOfIsIntegral
instIsIntegralSpecOfIsDomainCarrier
affine_isReduced_iff πŸ“–mathematicalβ€”IsReduced
Spec
IsReduced
CommRingCat.carrier
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
CommRingCat.commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”isReduced_of_injective
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingEquiv.injective
IsReduced.component_reduced
instIsReducedSpecOfIsReducedCarrier
basicOpen_eq_bot_iff πŸ“–mathematicalβ€”Scheme.basicOpen
Bot.bot
Scheme.Opens
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
HeytingAlgebra.toOrderBot
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
CommRingCat.commRing
β€”eq_zero_of_basicOpen_eq_bot
Scheme.basicOpen_zero
eq_zero_of_basicOpen_eq_bot πŸ“–mathematicalScheme.basicOpen
Bot.bot
Scheme.Opens
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
GeneralizedHeytingAlgebra.toLattice
HeytingAlgebra.toGeneralizedHeytingAlgebra
Order.Frame.toHeytingAlgebra
TopologicalSpace.Opens.instFrame
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
HeytingAlgebra.toOrderBot
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
CommRingCat.commRing
β€”TopCat.Presheaf.section_ext
CommRingCat.Colimits.hasColimits_commRingCat
CommRingCat.FilteredColimits.forget_preservesFilteredColimits
CommRingCat.hasLimits
CommRingCat.forget_preservesLimits
CommRingCat.forgetReflectIsos
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
reduce_to_affine_global
TopCat.Presheaf.germ_res_apply
Scheme.basicOpen_res
inf_bot_eq
Scheme.Hom.preimage_opensRange
isReduced_of_isOpenImmersion
Scheme.preimage_basicOpen
TopologicalSpace.Opens.ext
TopologicalSpace.Opens.is_open'
IsOpenImmersion.instIsIsoCommRingCatStalkMap
CategoryTheory.IsIso.hom_inv_id
CommRingCat.comp_apply
Scheme.Hom.germ_stalkMap_apply
IsNilpotent.eq_zero
IsReduced.component_reduced
IsNilpotent.map
PrimeSpectrum.basicOpen_eq_bot_iff
basicOpen_eq_of_affine'
CommRingCat.id_apply
CategoryTheory.Iso.hom_inv_id
instIrreducibleSpaceCarrierCarrierCommRingCatSpecOfIsDomainCarrier πŸ“–mathematicalβ€”IrreducibleSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Spec
SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”PrimeSpectrum.irreducibleSpace
instIsClosedUnderIsomorphismsSchemeIrreducibleSpaceCarrierCarrierCommRingCat πŸ“–mathematicalβ€”CategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
Scheme
Scheme.instCategory
IrreducibleSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”Homeomorph.irreducibleSpace_iff
CategoryTheory.Iso.isIso_hom
instIsDomainCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopOfIsIntegral πŸ“–mathematicalβ€”IsDomain
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”IsIntegral.component_integral
IsIntegral.nonempty
instIsIntegralSpecOfIsDomainCarrier πŸ“–mathematicalβ€”IsIntegral
Spec
β€”isIntegral_of_irreducibleSpace_of_isReduced
instIsReducedSpecOfIsReducedCarrier
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIrreducibleSpaceCarrierCarrierCommRingCatSpecOfIsDomainCarrier
instIsReducedSpecOfIsReducedCarrier πŸ“–mathematicalβ€”IsReduced
Spec
β€”isReduced_of_isReduced_stalk
CommRingCat.Colimits.hasColimits_commRingCat
PrimeSpectrum.isPrime
instIsReducedLocalization
isReduced_of_injective
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RingEquiv.injective
instIsReducedToScheme πŸ“–mathematicalβ€”IsReduced
Scheme.Opens.toScheme
β€”isReduced_of_isOpenImmersion
Scheme.Opens.instIsOpenImmersionΞΉ
instPrespectralSpaceCarrierCarrierCommRingCat πŸ“–mathematicalβ€”PrespectralSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”PrespectralSpace.of_isClosedEmbedding
PrimeSpectrum.instPrespectralSpace
CategoryTheory.Iso.isIso_hom
Homeomorph.isClosedEmbedding
Scheme.instIsOpenImmersionF
isAffineOpen_opensRange
Scheme.isAffine_affineCover
PrespectralSpace.of_isOpenCover
Scheme.OpenCover.isOpenCover_opensRange
instQuasiSoberCarrierCarrierCommRingCat πŸ“–mathematicalβ€”QuasiSober
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”quasiSober_of_open_cover
Topology.IsOpenEmbedding.isOpen_range
Scheme.Hom.isOpenEmbedding
Scheme.instIsOpenImmersionF
Topology.IsOpenEmbedding.quasiSober
Topology.IsOpenEmbedding.isEmbedding
Homeomorph.isOpenEmbedding
PrimeSpectrum.quasiSober
Scheme.local_affine
Set.top_eq_univ
Set.sUnion_range
Set.eq_univ_iff_forall
Scheme.instJointlySurjectivePrecoverage
Scheme.Cover.covers
instT0SpaceCarrierCarrierCommRingCat πŸ“–mathematicalβ€”T0Space
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”T0Space.of_open_cover
Scheme.instJointlySurjectivePrecoverage
Scheme.Cover.covers
TopologicalSpace.Opens.is_open'
Scheme.instIsOpenImmersionF
Topology.IsEmbedding.t0Space
PrimeSpectrum.instT0Space
isAffineOpen_opensRange
Scheme.isAffine_affineCover
Homeomorph.isEmbedding
irreducibleSpace_of_isIntegral πŸ“–mathematicalβ€”IrreducibleSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”IsIntegral.nonempty
IsClosed.isOpen_compl
le_sup_left
le_sup_right
TopologicalSpace.Opens.ext
Set.ext
instIsEmptyFalse
MulEquiv.isDomain
IsIntegral.component_integral
Set.not_top_subset
false_of_nontrivial_of_product_domain
Scheme.component_nontrivial
isField_of_isIntegral_of_subsingleton πŸ“–mathematicalβ€”IsField
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”PrimeSpectrum.t1Space_iff_isField
instIsDomainCarrierObjOppositeOpensCarrierCarrierCommRingCatPresheafOpOpensTopOfIsIntegral
Homeomorph.t1Space
T2Space.t1Space
DiscreteTopology.toT2Space
Subsingleton.discreteTopology
instIsAffineOfFiniteOfDiscreteTopologyCarrierCarrierCommRingCat
Finite.of_subsingleton
CategoryTheory.Iso.isIso_hom
isField_stalk_of_closure_mem_irreducibleComponents πŸ“–mathematicalSet
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
Set.instMembership
irreducibleComponents
SheafedSpace.instTopologicalSpaceCarrierCarrier
closure
Set.instSingletonSet
IsField
CommRingCat.carrier
TopCat.Presheaf.stalk
CommRingCat.Colimits.hasColimits_commRingCat
PresheafedSpace.presheaf
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”CommRingCat.Colimits.hasColimits_commRingCat
PrimeSpectrum.vanishingIdeal_singleton
PrimeSpectrum.vanishingIdeal_mem_minimalPrimes
PrimeSpectrum.subsingleton_iff_isField_of_isReduced
isReduced_stalk_of_isReduced
IsLocalRing.toNontrivial
LocallyRingedSpace.instIsLocalRingCarrierStalkCommRingCatPresheaf
IsLocalization.subsingleton_primeSpectrum_of_mem_minimalPrimes
StructureSheaf.IsLocalization.to_stalk
Scheme.Cover.exists_eq
Scheme.instJointlySurjectivePrecoverage
isReduced_of_isOpenImmersion
Scheme.instIsOpenImmersionF
MulEquiv.isField
Topology.IsEmbedding.closure_eq_preimage_closure_image
Topology.IsOpenEmbedding.toIsEmbedding
Scheme.Hom.isOpenEmbedding
Set.image_singleton
preimage_mem_irreducibleComponents
subset_closure
Scheme.local_affine
IsOpenImmersion.instIsIsoCommRingCatStalkMap
isIntegral_iff_irreducibleSpace_and_isReduced πŸ“–mathematicalβ€”IsIntegral
IrreducibleSpace
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
IsReduced
β€”irreducibleSpace_of_isIntegral
isReduced_of_isIntegral
isIntegral_of_irreducibleSpace_of_isReduced
isIntegral_of_irreducibleSpace_of_isReduced πŸ“–mathematicalβ€”IsIntegralβ€”ConnectedSpace.toNonempty
IrreducibleSpace.connectedSpace
nonempty_preirreducible_inter
IrreducibleSpace.toPreirreducibleSpace
TopologicalSpace.Opens.is_open'
CommRingCat.Colimits.hasColimits_commRingCat
zero_ne_one'
NeZero.one
IsLocalRing.toNontrivial
LocallyRingedSpace.instIsLocalRingCarrierStalkCommRingCatPresheaf
isUnit_zero_iff
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
IsUnit.mul
NoZeroDivisors.to_isDomain
Scheme.component_nontrivial
isIntegral_of_isAffine_of_isDomain πŸ“–mathematicalβ€”IsIntegralβ€”isIntegral_of_isOpenImmersion
IsOpenImmersion.of_isIso
CategoryTheory.Iso.isIso_hom
instIsIntegralSpecOfIsDomainCarrier
isIntegral_of_isOpenImmersion πŸ“–mathematicalβ€”IsIntegralβ€”Scheme.Hom.preimage_image_eq
IsIntegral.component_integral
Subtype.prop
MulEquiv.isDomain
Scheme.Hom.instIsIsoCommRingCatAppObjOpensOpensFunctor
isReduced_of_isAffine_isReduced πŸ“–mathematicalβ€”IsReducedβ€”isReduced_of_isOpenImmersion
IsOpenImmersion.of_isIso
CategoryTheory.Iso.isIso_hom
instIsReducedSpecOfIsReducedCarrier
isReduced_of_isIntegral πŸ“–mathematicalβ€”IsReducedβ€”Set.eq_empty_or_nonempty
SetLike.ext'
isReduced_of_noZeroDivisors
IsRightCancelMulZero.to_noZeroDivisors
IsCancelMulZero.toIsRightCancelMulZero
Subsingleton.to_isCancelMulZero
CommRingCat.subsingleton_of_isTerminal
IsDomain.to_noZeroDivisors
IsIntegral.component_integral
isReduced_of_isOpenImmersion πŸ“–mathematicalβ€”IsReducedβ€”Scheme.Hom.preimage_image_eq
isReduced_of_injective
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Scheme.Hom.instIsIsoCommRingCatAppObjOpensOpensFunctor
RingEquiv.injective
IsReduced.component_reduced
isReduced_of_isReduced_stalk πŸ“–mathematicalIsReduced
CommRingCat.carrier
TopCat.Presheaf.stalk
CommRingCat
CommRingCat.instCategory
CommRingCat.Colimits.hasColimits_commRingCat
PresheafedSpace.carrier
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
PresheafedSpace.presheaf
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
CommRingCat.commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
IsReducedβ€”CommRingCat.Colimits.hasColimits_commRingCat
TopCat.Presheaf.section_ext
CommRingCat.FilteredColimits.forget_preservesFilteredColimits
CommRingCat.hasLimits
CommRingCat.forget_preservesLimits
CommRingCat.forgetReflectIsos
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
IsNilpotent.eq_zero
IsNilpotent.map
isReduced_stalk_of_isReduced πŸ“–mathematicalβ€”IsReduced
CommRingCat.carrier
TopCat.Presheaf.stalk
CommRingCat
CommRingCat.instCategory
CommRingCat.Colimits.hasColimits_commRingCat
PresheafedSpace.carrier
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
PresheafedSpace.presheaf
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
CommRingCat.commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”CommRingCat.Colimits.hasColimits_commRingCat
TopCat.Presheaf.germ_exist
CommRingCat.FilteredColimits.forget_preservesFilteredColimits
TopCat.Presheaf.germ_eq
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
IsNilpotent.eq_zero
IsReduced.component_reduced
TopCat.Presheaf.germ_res
CommRingCat.comp_apply
map_injective_of_isIntegral πŸ“–mathematicalβ€”CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
PresheafedSpace.presheaf
Opposite.op
Scheme.Opens
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
RingHom.instFunLike
CommRingCat.instConcreteCategoryRingHomCarrier
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
SheafedSpace.instTopologicalSpaceCarrierCarrier
β€”injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
basicOpen_eq_bot_iff
isReduced_of_isIntegral
Mathlib.Tactic.Contrapose.contrapose₁
nonempty_preirreducible_inter
IrreducibleSpace.toPreirreducibleSpace
irreducibleSpace_of_isIntegral
TopologicalSpace.Opens.isOpen
Scheme.basicOpen_res
reduce_to_affine_global πŸ“–β€”Top.top
Scheme.Opens
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.carrier
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Scheme.Hom.opensRange
Spec
β€”β€”TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
Scheme.affineBasisCover_is_basis
SetLike.mem_coe
Subtype.prop
TopologicalSpace.Opens.isOpen
Topology.IsOpenEmbedding.isOpen_range
Scheme.Hom.isOpenEmbedding
Scheme.instIsOpenImmersionF
Scheme.local_affine
reduce_to_affine_nbhd πŸ“–β€”Spec
DFunLike.coe
PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
SheafedSpace.toPresheafedSpace
LocallyRingedSpace.toSheafedSpace
Scheme.toLocallyRingedSpace
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
PresheafedSpace.Hom.base
LocallyRingedSpace.Hom.toHom
Scheme.Hom.toLRSHom'
β€”β€”Scheme.instJointlySurjectivePrecoverage
Scheme.Cover.covers
Scheme.instIsOpenImmersionF
Scheme.local_affine

AlgebraicGeometry.IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
component_integral πŸ“–mathematicalβ€”IsDomain
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
AlgebraicGeometry.Scheme.Opens
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
β€”β€”
nonempty πŸ“–mathematicalβ€”TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
β€”β€”
of_isIso πŸ“–mathematicalβ€”AlgebraicGeometry.IsIntegralβ€”Nonempty.map
nonempty
AlgebraicGeometry.isIntegral_of_isOpenImmersion
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.IsIso.inv_isIso

AlgebraicGeometry.IsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
component_reduced πŸ“–mathematicalβ€”IsReduced
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
AlgebraicGeometry.Scheme.Opens
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
CommRingCat.commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”β€”
of_openCover πŸ“–β€”AlgebraicGeometry.IsReduced
CategoryTheory.PreZeroHypercover.X
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.IsOpenImmersion
β€”β€”CommRingCat.Colimits.hasColimits_commRingCat
AlgebraicGeometry.Scheme.Cover.exists_eq
AlgebraicGeometry.Scheme.instJointlySurjectivePrecoverage
isReduced_of_injective
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
AlgebraicGeometry.IsOpenImmersion.instIsIsoCommRingCatStalkMap
AlgebraicGeometry.Scheme.instIsOpenImmersionF
RingEquiv.injective
AlgebraicGeometry.isReduced_stalk_of_isReduced
AlgebraicGeometry.isReduced_of_isReduced_stalk

AlgebraicGeometry.Scheme

Theorems

NameKindAssumesProvesValidatesDepends On
component_nontrivial πŸ“–mathematicalβ€”Nontrivial
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
Opens
β€”AlgebraicGeometry.LocallyRingedSpace.component_nontrivial

---

← Back to Index