Documentation Verification Report

QuasiAffine

📁 Source: Mathlib/AlgebraicGeometry/QuasiAffine.lean

Statistics

MetricCount
DefinitionsIsQuasiAffine, openCoverBasicOpenTop
2
TheoremsisBasis_basicOpen, of_forall_exists_mem_basicOpen, of_isAffineHom, of_isImmersion, toCompactSpace, toIsImmersion, instIsOpenImmersionToSpecΓOfIsQuasiAffine, instIsQuasiAffineOfIsAffine, instIsSeparatedOfIsQuasiAffine, isPullback_toSpecΓ_toSpecΓ, openCoverBasicOpenTop_f, preimage_opensRange_toSpecΓ
12
Total14

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
IsQuasiAffine 📖CompData
5 mathmath: IsQuasiAffine.of_isAffineHom, IsQuasiAffine.of_isImmersion, IsQuasiAffine.of_forall_exists_mem_basicOpen, exists_isQuasiAffine_of_isLimit, instIsQuasiAffineOfIsAffine
openCoverBasicOpenTop 📖CompOp
1 mathmath: openCoverBasicOpenTop_f

Theorems

NameKindAssumesProvesValidatesDepends On
instIsOpenImmersionToSpecΓOfIsQuasiAffine 📖mathematicalAlgebraicGeometry.IsOpenImmersion
AlgebraicGeometry.Spec
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
toSpecΓ
ker_toSpecΓ
IsQuasiAffine.toCompactSpace
instIsIsoSubschemeιBotIdealSheafData
Hom.toImage_imageι
AlgebraicGeometry.IsOpenImmersion.comp
AlgebraicGeometry.IsImmersion.instIsOpenImmersionToImageOfQuasiCompact
IsQuasiAffine.toIsImmersion
AlgebraicGeometry.instQuasiCompactToSpecΓOfCompactSpaceCarrierCarrierCommRingCat
AlgebraicGeometry.IsOpenImmersion.of_isIso
instIsQuasiAffineOfIsAffine 📖mathematicalIsQuasiAffinecompactSpace_of_isAffine
AlgebraicGeometry.IsImmersion.instOfIsClosedImmersion
AlgebraicGeometry.IsClosedImmersion.instOfIsIsoScheme
AlgebraicGeometry.IsAffine.affine
instIsSeparatedOfIsQuasiAffine 📖mathematicalIsSeparatedAlgebraicGeometry.instHasTerminalScheme
CategoryTheory.Limits.terminal.comp_from
AlgebraicGeometry.IsSeparated.instCompScheme
AlgebraicGeometry.IsSeparated.isSeparated_of_mono
AlgebraicGeometry.IsPreimmersion.instMonoScheme
AlgebraicGeometry.IsImmersion.toIsPreimmersion
IsQuasiAffine.toIsImmersion
IsSeparated.isSeparated_terminal_from
instIsSeparatedOfIsAffine
AlgebraicGeometry.isAffine_Spec
isPullback_toSpecΓ_toSpecΓ 📖mathematicalCategoryTheory.IsPullback
AlgebraicGeometry.Scheme
instCategory
AlgebraicGeometry.Spec
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
toSpecΓ
AlgebraicGeometry.Spec.map
Hom.appTop
AlgebraicGeometry.QuasiCompact.compactSpace_of_compactSpace
AlgebraicGeometry.instQuasiCompactOfIsAffineHom
IsQuasiAffine.toCompactSpace
IsQuasiAffine.of_isAffineHom
le_top
Eq.ge
preimage_basicOpen_top
AlgebraicGeometry.isLocalization_basicOpen_of_qcqs
isCompact_univ
isQuasiSeparated_univ
instQuasiSeparatedSpaceCarrierCarrierCommRingCatOfIsSeparated
instIsSeparatedOfIsQuasiAffine
CommRingCat.isPushout_of_isLocalization
basicOpen_le
LE.le.trans
Hom.map_appLE
Hom.appLE.eq_1
IsLocalization.Away.instMapRingHomPowersOfCoe
isPullback_of_openCover
Pullback.instHasPullback
AlgebraicGeometry.IsAffineOpen.preimage
CategoryTheory.IsPullback.of_iso
CategoryTheory.IsPullback.map
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
CategoryTheory.Functor.instPreservesLimitsOfSizeOfIsRightAdjoint
CategoryTheory.instIsRightAdjointOfMonadicRightAdjoint
CategoryTheory.IsPushout.op
instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
instIsJointlySurjectivePreservingIsOpenImmersion
AlgebraicGeometry.isOpenImmersion_stableUnderBaseChange
AlgebraicGeometry.Spec.map_comp
CategoryTheory.Category.assoc
Opens.toSpecΓ_SpecMap_presheaf_map_assoc
Opens.toSpecΓ_naturality
CategoryTheory.cancel_mono
AlgebraicGeometry.IsOpenImmersion.mono
Opens.instIsOpenImmersionι
AlgebraicGeometry.IsOpenImmersion.hasPullback_of_right
AlgebraicGeometry.morphismRestrict_ι
homOfLE_ι_assoc
isoOfEq_hom_ι_assoc
AlgebraicGeometry.pullbackRestrictIsoRestrict_hom_ι_assoc
CategoryTheory.Limits.pullback.condition
CategoryTheory.Category.comp_id
Opens.toSpecΓ_SpecMap_presheaf_map
Opens.toSpecΓ_top
AlgebraicGeometry.IsAffineOpen.isoSpec_inv_ι_assoc
AlgebraicGeometry.IsAffineOpen.fromSpec_toSpecΓ
CategoryTheory.Category.id_comp
openCoverBasicOpenTop_f 📖mathematicalCategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
AlgebraicGeometry.IsOpenImmersion
openCoverBasicOpenTop
Opens.ι
basicOpen
Top.top
Opens
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
AlgebraicGeometry.IsAffineOpen
preimage_opensRange_toSpecΓ 📖mathematicalCategoryTheory.Functor.obj
Opens
AlgebraicGeometry.Spec
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
TopologicalSpace.Opens.map
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
AlgebraicGeometry.Spec.map
Hom.appTop
Hom.opensRange
toSpecΓ
instIsOpenImmersionToSpecΓOfIsQuasiAffine
instIsOpenImmersionToSpecΓOfIsQuasiAffine
Hom.image_top_eq_opensRange
AlgebraicGeometry.IsOpenImmersion.image_preimage_eq_preimage_image_of_isPullback
isPullback_toSpecΓ_toSpecΓ

AlgebraicGeometry.Scheme.IsQuasiAffine

Theorems

NameKindAssumesProvesValidatesDepends On
isBasis_basicOpen 📖mathematicalTopologicalSpace.Opens.IsBasis
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
setOf
TopologicalSpace.Opens
CommRingCat.carrier
CategoryTheory.Functor.obj
Opposite
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
AlgebraicGeometry.Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AlgebraicGeometry.IsAffineOpen
AlgebraicGeometry.Scheme.basicOpen
TopologicalSpace.Opens.isBasis_iff_nbhd
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
PrimeSpectrum.isBasis_basic_opens
Set.mem_image_of_mem
TopologicalSpace.Opens.is_open'
AlgebraicGeometry.Scheme.instIsOpenImmersionToSpecΓOfIsQuasiAffine
AlgebraicGeometry.Scheme.Hom.isAffineOpen_iff_of_isOpenImmersion
SetLike.coe_injective
Set.image_preimage_eq_of_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_subset_range
AlgebraicGeometry.IsAffineOpen.Spec_basicOpen
LE.le.trans_eq
Set.preimage_mono
Set.preimage_image_eq
Topology.IsEmbedding.injective
AlgebraicGeometry.Scheme.Hom.isEmbedding
AlgebraicGeometry.IsImmersion.toIsPreimmersion
toIsImmersion
of_forall_exists_mem_basicOpen 📖mathematicalAlgebraicGeometry.IsAffineOpen
AlgebraicGeometry.Scheme.basicOpen
Top.top
AlgebraicGeometry.Scheme.Opens
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
AlgebraicGeometry.Scheme.IsQuasiAffineQuasiSeparatedSpace.of_isOpenCover
eq_top_iff
TopologicalSpace.Opens.mem_iSup
AlgebraicGeometry.isRetrocompact_basicOpen
AlgebraicGeometry.IsAffineOpen.isQuasiSeparated
AlgebraicGeometry.IsZariskiLocalAtTarget.of_forall_source_exists_preimage
AlgebraicGeometry.isOpenImmersion_isZariskiLocalAtTarget
CategoryTheory.MorphismProperty.Respects.toRespectsRight
CategoryTheory.MorphismProperty.instRespectsOfIsStableUnderComposition
AlgebraicGeometry.isOpenImmersion_isStableUnderComposition
AlgebraicGeometry.IsOpenImmersion.instHasOfPostcompPropertyScheme
Eq.ge
AlgebraicGeometry.Scheme.toSpecΓ_preimage_basicOpen
le_top
AlgebraicGeometry.Scheme.Opens.toSpecΓ_SpecMap_presheaf_map_top
AlgebraicGeometry.isLocalization_basicOpen_of_qcqs
isCompact_univ
isQuasiSeparated_univ
CategoryTheory.MorphismProperty.comp_mem
AlgebraicGeometry.IsOpenImmersion.of_isIso
CategoryTheory.Iso.isIso_hom
AlgebraicGeometry.IsOpenImmersion.of_isLocalization
AlgebraicGeometry.IsImmersion.instOfIsOpenImmersion
of_isAffineHom 📖mathematicalAlgebraicGeometry.Scheme.IsQuasiAffineAlgebraicGeometry.QuasiCompact.compactSpace_of_compactSpace
AlgebraicGeometry.instQuasiCompactOfIsAffineHom
toCompactSpace
of_forall_exists_mem_basicOpen
TopologicalSpace.IsTopologicalBasis.exists_subset_of_mem_open
isBasis_basicOpen
Set.mem_univ
isOpen_univ
AlgebraicGeometry.Scheme.preimage_basicOpen_top
AlgebraicGeometry.IsAffineOpen.preimage
of_isImmersion 📖mathematicalAlgebraicGeometry.Scheme.IsQuasiAffineAlgebraicGeometry.Scheme.toSpecΓ_naturality
AlgebraicGeometry.IsImmersion.comp
toIsImmersion
AlgebraicGeometry.IsImmersion.of_comp
toCompactSpace 📖mathematicalCompactSpace
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
toIsImmersion 📖mathematicalAlgebraicGeometry.IsImmersion
AlgebraicGeometry.Spec
CategoryTheory.Functor.obj
Opposite
TopologicalSpace.Opens
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.str
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
AlgebraicGeometry.PresheafedSpace.presheaf
Opposite.op
AlgebraicGeometry.Scheme.Opens
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
TopologicalSpace.Opens.instCompleteLattice
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AlgebraicGeometry.Scheme.toSpecΓ

---

← Back to Index