Documentation Verification Report

MorphismProperty

šŸ“ Source: Mathlib/AlgebraicGeometry/Sites/MorphismProperty.lean

Statistics

MetricCount
DefinitionsIsJointlySurjectivePreserving, jointlySurjectivePrecoverage, precoverage, zariskiPrecoverage
4
Theoremsexists_preimage_fst_triplet_of_prop, exists_preimage_snd_triplet_of_prop, bot_mem_precoverage, instHasIsosPrecoverageOfContainsIdentitiesOfRespectsIso, instHasPullbacksPrecoverageOfHasPullbacks, instIsJointlySurjectivePreservingIsOpenImmersion, instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange, instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition, ofArrows_mem_precoverage_iff, precoverage_mono, singleton_mem_precoverage_iff
11
Total15

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
IsJointlySurjectivePreserving šŸ“–CompData
2 mathmath: isJointlySurjectivePreserving, instIsJointlySurjectivePreservingIsOpenImmersion
jointlySurjectivePrecoverage šŸ“–CompOp
1 mathmath: instIsStableUnderBaseChangeJointlySurjectivePrecoverage
precoverage šŸ“–CompOp
199 mathmath: coverOfIsIso_Iā‚€, AffineOpenCover.openCover_f, Cover.pullbackCoverOver_X, Cover.gluedCoverT'_snd_snd_assoc, Cover.LocallyDirected.directed, AlgebraicGeometry.instIsLocallyArtinianXScheme, AffineCover.cover_Iā‚€, affineBasisCover_is_basis, Pullback.openCoverOfLeftRight_f, mem_grothendieckTopology_iff, AlgebraicGeometry.QuasiCompactCover.instCoverOfIsIso, Cover.glued_cover_cocycle_fst, AlgebraicGeometry.sigmaOpenCover_X, Hom.iUnion_support_ker_openCover_map_comp, Pullback.openCoverOfBase_Iā‚€, OpenCover.finiteSubcover_f, Pullback.openCoverOfBase_f, Cover.pullbackCoverOver'_X, Pullback.openCoverOfRight_Iā‚€, instHasPullbacksPrecoverageOfHasPullbacks, AlgebraicGeometry.ExistsHomHomCompEqCompAux.exists_eq, Cover.functorOfLocallyDirected_obj, openCoverOfIsOpenCover_Iā‚€, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hš’°S, Cover.glued_cover_cocycle, affineOpenCover_Iā‚€, Cover.gluedCover_t, precoverage_mono, Cover.pullbackCoverOver_Iā‚€, Cover.gluedCover_U, bot_mem_precoverage, OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom, affineOpenCover_idx, Hom.fromNormalization_preimage, Cover.ColimitGluingData.cocone_ι_transitionMap, presieveā‚€_mem_precoverage_iff, Cover.mkOfCovers_Iā‚€, Pullback.left_affine_comp_pullback_hasPullback, AlgebraicGeometry.IsLocalAtSource.iff_of_openCover, Hom.ι_toNormalization, Cover.ColimitGluingData.transitionCocone_pt, GlueData.openCover_f, instHasIsosPrecoverageOfContainsIdentitiesOfRespectsIso, AlgebraicGeometry.instIsAffineXSchemeAffineCover, Cover.ColimitGluingData.transitionMap_id, Hom.cover_X, directedAffineCover_f, Cover.gluedCover_V, Cover.coconeOfLocallyDirected_ι, Cover.ι_fromGlued_assoc, OpenCover.isOpenCover_opensRange, Cover.ulift_X, openCoverOfIsOpenCover_f, Cover.gluedCoverT'_fst_fst, IsLocallyDirected.openCover_f, AlgebraicGeometry.QuasiCompactCover.exists_hom, Cover.gluedCoverT'_snd_fst, isAffine_affineBasisCover, Cover.trans_id, AlgebraicGeometry.sourceLocalClosure.property_coverMap_comp, Cover.exists_lift_trans_eq, directedAffineCover_Iā‚€, Cover.RelativeGluingData.equifibered, Cover.instIsLocallyDirectedIā‚€CompFunctorOfLocallyDirectedForget, AlgebraicGeometry.ExistsHomHomCompEqCompAux.hš’°X, OpenCover.restrict_f, OpenCover.iSup_opensRange, Cover.mkOfCovers_X, exists_cover_of_mem_pretopology, LocalRepresentability.glueData_openCover_map, Pullback.openCoverOfRight_f, Hom.iInf_ker_openCover_map_comp, AffineCover.cover_f, Cover.gluedCover_J, Cover.ColimitGluingData.transitionCocone_ι_app, Cover.sigmaFunctor_obj, Cover.glued_cover_cocycle_snd, Cover.trans_map, openCoverOfIsOpenCover_X, Cover.toSigma_sā‚€, OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom_assoc, singleton_mem_precoverage_iff, AlgebraicGeometry.QuasiCompactCover.inst, GlueData.openCover_X, Cover.LocallyDirected.trans_comp, Cover.functorOfLocallyDirected_map, directedAffineCover_X, Cover.property_trans, Cover.sigma_X, instSmallPrecoverage, Hom.cover_f, AffineZariskiSite.directedCover_X, Cover.ulift_f, OpenCover.instIsOpenImmersionTrans, AlgebraicGeometry.instSurjectiveDescIā‚€SchemeF, Cover.ColimitGluingData.cocone_ι_transitionMap_assoc, Cover.pullbackCoverOver'_Iā‚€, Cover.ulift_Iā‚€, Cover.sigmaFunctor_map, Pullback.openCoverOfRight_X, Cover.gluedCoverT'_snd_fst_assoc, AffineZariskiSite.directedCover_f, IsLocallyDirected.openCover_Iā‚€, AlgebraicGeometry.IsZariskiLocalAtSource.iff_of_openCover, Hom.iInf_ker_openCover_map_comp_apply, Cover.pushforwardIso_f, IsLocallyDirected.openCover_X, Cover.pullbackCoverOver_f, Pullback.openCoverOfBase_X, Cover.toPresieveOver_le_arrows_iff, Pullback.openCoverOfBase'_f, Cover.gluedCover_f, Hom.ι_toNormalization_assoc, Cover.Hom.sigma_hā‚€, Cover.overEquiv_generate_toPresieveOver_eq_ofArrows, Cover.LocallyDirected.trans_id, Cover.toSigma_hā‚€, AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover, directedAffineCover_trans, coverOfIsIso_X, Cover.LocallyDirected.property_trans, AffineZariskiSite.opensRange_relativeGluingData_map, Cover.ColimitGluingData.prop_trans, instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition, Cover.gluedCoverT'_fst_snd_assoc, Cover.coconeOfLocallyDirected_pt, ofArrows_mem_precoverage_iff, Cover.ColimitGluingData.trans_app_left, AffineCover.cover_X, affineBasisCover_obj, Cover.ColimitGluingData.transitionMap_comp, AlgebraicGeometry.sigmaOpenCover_Iā‚€, Cover.Hom.sigma_sā‚€, Cover.sigma_Iā‚€, instEtaleF, instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange, Cover.pushforwardIso_Iā‚€, AlgebraicGeometry.instIsAffineXSchemeCoverOfIsIsoIsOpenImmersionId, OpenCover.finiteSubcover_X, Hom.ι_fromNormalization_assoc, Cover.trans_comp, OpenCover.pullbackCoverAffineRefinementObjIso_inv_map, Pullback.openCoverOfLeftRight_Iā‚€, coverOfIsIso_f, Hom.cover_Iā‚€, precoverage_le_qcPrecoverage_of_isOpenMap, Cover.gluedCoverT'_snd_snd, AlgebraicGeometry.IsZariskiLocalAtTarget.iff_of_openCover, AlgebraicGeometry.instIsLocallyNoetherianXScheme, AlgebraicGeometry.sigmaOpenCover_f, OpenCover.pullbackCoverAffineRefinementObjIso_inv_map_assoc, AlgebraicGeometry.isLocallyArtinian_iff_openCover, AffineOpenCover.openCover_Iā‚€, exists_cover_of_mem_grothendieckTopology, OpenCover.restrict_Iā‚€, Pullback.openCoverOfLeft_Iā‚€, AlgebraicGeometry.QuasiCompactCover.homCover, instIsOpenImmersionF, affineOpenCover_f, Cover.pullbackCoverOver'_f, Cover.gluedCoverT'_fst_snd, Cover.pushforwardIso_X, AffineZariskiSite.PreservesLocalization.opensRange_map, Cover.add_toPreZeroHypercover, affineBasisCover_map_range, Cover.map_prop, Cover.LocallyDirected.w, grothendieckTopology_cover, Hom.instIsLocallyDirectedIā‚€DirectedCoverCompFunctorNormalizationGlueDataForget, Cover.Over.isOver_map, Cover.mkOfCovers_f, Hom.ι_fromNormalization, mem_pretopology_iff, GlueData.openCover_Iā‚€, AlgebraicGeometry.isLocallyNoetherian_iff_openCover, Cover.ColimitGluingData.functor_map, Cover.intersectionOfLocallyDirected_f, Pullback.openCoverOfLeft_f, OpenCover.restrict_X, Cover.mem_pretopology, openCoverBasicOpenTop_f, Cover.gluedCoverT'_fst_fst_assoc, OpenCover.instIsOpenImmersionMapIā‚€FunctorOfLocallyDirected, Cover.functorOfLocallyDirectedHomBase_app, AffineZariskiSite.PreservesLocalization.colimitDesc_preimage, instJointlySurjectivePrecoverage, Cover.ColimitGluingData.functor_obj, Pullback.openCoverOfLeftRight_X, pretopology_cover, isAffine_affineCover, AffineZariskiSite.directedCover_Iā‚€, AffineOpenCover.openCover_X, Cover.sigma_f, Pullback.openCoverOfLeft_X, Cover.RelativeGluingData.instIsOpenImmersionMapIā‚€Functor, Pullback.diagonalCover_map, Cover.ι_fromGlued, Cover.mem_grothendieckTopology, isAffine_affineOpenCover
zariskiPrecoverage šŸ“–CompOp
2 mathmath: instIsLocalAtTargetIsomorphismsZariskiPrecoverage, zariskiPrecoverage_le_qcPrecoverage

Theorems

NameKindAssumesProvesValidatesDepends On
bot_mem_precoverage šŸ“–mathematical—CategoryTheory.Presieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
precoverage
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.instCompleteLatticePresieve
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
—CategoryTheory.MorphismProperty.bot_mem_precoverage
instHasIsosPrecoverageOfContainsIdentitiesOfRespectsIso šŸ“–mathematical—CategoryTheory.Precoverage.HasIsos
AlgebraicGeometry.Scheme
instCategory
precoverage
—CategoryTheory.Precoverage.instHasIsosMin
CategoryTheory.Precoverage.instHasIsosComap
CategoryTheory.Types.instHasIsosJointlySurjectivePrecoverage
CategoryTheory.MorphismProperty.instHasIsosPrecoverageOfContainsIdentitiesOfRespectsIso
instHasPullbacksPrecoverageOfHasPullbacks šŸ“–mathematical—CategoryTheory.Precoverage.HasPullbacks
AlgebraicGeometry.Scheme
instCategory
precoverage
—CategoryTheory.MorphismProperty.hasPullback
instIsJointlySurjectivePreservingIsOpenImmersion šŸ“–mathematical—IsJointlySurjectivePreserving
AlgebraicGeometry.IsOpenImmersion
—CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
TopCat.topCat_hasLimits
AlgebraicGeometry.IsOpenImmersion.instPreservesLimitSchemeTopCatWalkingCospanCospanForgetToTop_1
CategoryTheory.Limits.PreservesPullback.iso_hom_fst
TopCat.pullback_fst_range
TopCat.comp_app
CategoryTheory.Iso.inv_hom_id_assoc
instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange šŸ“–mathematical—CategoryTheory.Precoverage.IsStableUnderBaseChange
AlgebraicGeometry.Scheme
instCategory
precoverage
—ofArrows_mem_precoverage_iff
CategoryTheory.IsPullback.hasPullback
IsJointlySurjectivePreserving.exists_preimage_fst_triplet_of_prop
CategoryTheory.IsPullback.isoPullback_inv_fst
CategoryTheory.MorphismProperty.of_isPullback
CategoryTheory.IsPullback.flip
instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition šŸ“–mathematical—CategoryTheory.Precoverage.IsStableUnderComposition
AlgebraicGeometry.Scheme
instCategory
precoverage
—CategoryTheory.Precoverage.instIsStableUnderCompositionMin
CategoryTheory.Precoverage.instIsStableUnderCompositionComap
CategoryTheory.Types.instIsStableUnderCompositionJointlySurjectivePrecoverage
CategoryTheory.MorphismProperty.instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition
ofArrows_mem_precoverage_iff šŸ“–mathematical—CategoryTheory.Presieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
precoverage
CategoryTheory.Presieve.ofArrows
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
Set.range
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
——
precoverage_mono šŸ“–mathematicalCategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
instCategory
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.Precoverage
CategoryTheory.Precoverage.instPartialOrder
precoverage
—precoverage.eq_1
le_imp_le_of_le_of_le
inf_le_inf
le_refl
CategoryTheory.MorphismProperty.precoverage_monotone
singleton_mem_precoverage_iff šŸ“–mathematical—CategoryTheory.Presieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
precoverage
CategoryTheory.Presieve.singleton
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
—CategoryTheory.Presieve.ofArrows_pUnit
ofArrows_mem_precoverage_iff

AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving

Theorems

NameKindAssumesProvesValidatesDepends On
exists_preimage_fst_triplet_of_prop šŸ“–mathematicalDFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.Limits.pullback
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Limits.pullback.fst
——
exists_preimage_snd_triplet_of_prop šŸ“–mathematicalDFunLike.coe
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
CategoryTheory.Limits.pullback
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.Limits.pullback.snd
—CategoryTheory.Limits.hasPullback_symmetry
exists_preimage_fst_triplet_of_prop
AlgebraicGeometry.Scheme.Hom.comp_apply
CategoryTheory.Limits.pullbackSymmetry_inv_comp_snd

---

← Back to Index