Documentation Verification Report

Pretopology

πŸ“ Source: Mathlib/AlgebraicGeometry/Sites/Pretopology.lean

Statistics

MetricCount
DefinitionsgrothendieckTopology, jointlySurjectivePretopology, jointlySurjectiveTopology, pretopology, surjectiveFamiliesPretopology
5
Theoremsmem_grothendieckTopology, mem_pretopology, bot_mem_grothendieckTopology, exists_cover_of_mem_grothendieckTopology, exists_cover_of_mem_pretopology, grothendieckTopology_cover, grothendieckTopology_eq_inf, grothendieckTopology_le_grothendieckTopology, grothendieckTopology_monotone, instIsStableUnderBaseChangeJointlySurjectivePrecoverage, jointlySurjectiveTopology_eq_toGrothendieck_jointlySurjectivePretopology, mem_grothendieckTopology_iff, mem_jointlySurjectiveTopology_iff_jointlySurjectivePretopology, mem_pretopology_iff, pretopology_cover, pretopology_eq_inf, pretopology_le_inf, pretopology_le_pretopology, pretopology_monotone
19
Total24

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
grothendieckTopology πŸ“–CompOp
7 mathmath: bot_mem_grothendieckTopology, mem_grothendieckTopology_iff, grothendieckTopology_le_grothendieckTopology, grothendieckTopology_eq_inf, grothendieckTopology_monotone, grothendieckTopology_cover, Cover.mem_grothendieckTopology
jointlySurjectivePretopology πŸ“–CompOp
5 mathmath: mem_jointlySurjectiveTopology_iff_jointlySurjectivePretopology, pretopology_le_inf, grothendieckTopology_eq_inf, jointlySurjectiveTopology_eq_toGrothendieck_jointlySurjectivePretopology, pretopology_eq_inf
jointlySurjectiveTopology πŸ“–CompOp
2 mathmath: mem_jointlySurjectiveTopology_iff_jointlySurjectivePretopology, jointlySurjectiveTopology_eq_toGrothendieck_jointlySurjectivePretopology
pretopology πŸ“–CompOp
7 mathmath: pretopology_le_pretopology, pretopology_le_inf, pretopology_monotone, mem_pretopology_iff, Cover.mem_pretopology, pretopology_eq_inf, pretopology_cover
surjectiveFamiliesPretopology πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_mem_grothendieckTopology πŸ“–mathematicalβ€”CategoryTheory.Sieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
grothendieckTopology
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
CategoryTheory.Sieve.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”CategoryTheory.Sieve.generate_bot
CategoryTheory.Precoverage.generate_mem_toGrothendieck
bot_mem_precoverage
exists_cover_of_mem_grothendieckTopology πŸ“–mathematicalCategoryTheory.Sieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
grothendieckTopology
CategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CategoryTheory.instCompleteLatticePresieve
CategoryTheory.Presieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Sieve.arrows
β€”mem_grothendieckTopology_iff
exists_cover_of_mem_pretopology πŸ“–mathematicalCategoryTheory.Presieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Pretopology.toPrecoverage
Pullback.instHasPullbacks
pretopology
CategoryTheory.Presieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
β€”Pullback.instHasPullbacks
mem_pretopology_iff
grothendieckTopology_cover πŸ“–mathematicalβ€”CategoryTheory.Sieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
grothendieckTopology
CategoryTheory.Sieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
β€”Cover.mem_grothendieckTopology
grothendieckTopology_eq_inf πŸ“–mathematicalβ€”grothendieckTopology
CategoryTheory.Pretopology.toGrothendieck
AlgebraicGeometry.Scheme
instCategory
Pullback.instHasPullbacks
CategoryTheory.Pretopology
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Pretopology.instCompleteLattice
jointlySurjectivePretopology
CategoryTheory.MorphismProperty.pretopology
β€”Pullback.instHasPullbacks
grothendieckTopology.eq_1
instHasIsosPrecoverageOfContainsIdentitiesOfRespectsIso
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
CategoryTheory.MorphismProperty.instRespectsOfRespectsLeftOfRespectsRight
CategoryTheory.MorphismProperty.Respects.toRespectsLeft
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.respectsIso
CategoryTheory.MorphismProperty.Respects.toRespectsRight
instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
isJointlySurjectivePreserving
instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
CategoryTheory.Precoverage.toGrothendieck_toPretopology_eq_toGrothendieck
grothendieckTopology_le_grothendieckTopology πŸ“–mathematicalCategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
instCategory
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instLEGrothendieckTopology
grothendieckTopology
β€”grothendieckTopology_monotone
grothendieckTopology_monotone πŸ“–mathematicalCategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
instCategory
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instLEGrothendieckTopology
grothendieckTopology
β€”CategoryTheory.Precoverage.toGrothendieck_mono
precoverage_mono
instIsStableUnderBaseChangeJointlySurjectivePrecoverage πŸ“–mathematicalβ€”CategoryTheory.Precoverage.IsStableUnderBaseChange
AlgebraicGeometry.Scheme
instCategory
jointlySurjectivePrecoverage
β€”CategoryTheory.isStableUnderBaseChange_comap_jointlySurjectivePrecoverage
pullbackComparison_forget_surjective
jointlySurjectiveTopology_eq_toGrothendieck_jointlySurjectivePretopology πŸ“–mathematicalβ€”jointlySurjectiveTopology
CategoryTheory.Pretopology.toGrothendieck
AlgebraicGeometry.Scheme
instCategory
Pullback.instHasPullbacks
jointlySurjectivePretopology
β€”CategoryTheory.GrothendieckTopology.copy_eq
Pullback.instHasPullbacks
mem_grothendieckTopology_iff πŸ“–mathematicalβ€”CategoryTheory.Sieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
grothendieckTopology
CategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CategoryTheory.instCompleteLatticePresieve
CategoryTheory.Presieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Sieve.arrows
β€”instIsStableUnderCompositionPrecoverageOfIsStableUnderComposition
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsStableUnderBaseChangePrecoverageOfIsJointlySurjectivePreservingOfIsStableUnderBaseChange
isJointlySurjectivePreserving
instHasPullbacksPrecoverageOfHasPullbacks
CategoryTheory.MorphismProperty.instHasPullbacksOfHasPullbacks
Pullback.instHasPullbacks
instHasIsosPrecoverageOfContainsIdentitiesOfRespectsIso
CategoryTheory.MorphismProperty.IsMultiplicative.toContainsIdentities
CategoryTheory.MorphismProperty.instRespectsOfRespectsLeftOfRespectsRight
CategoryTheory.MorphismProperty.Respects.toRespectsLeft
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.respectsIso
CategoryTheory.MorphismProperty.Respects.toRespectsRight
CategoryTheory.Precoverage.mem_iff_exists_zeroHypercover
le_trans
instJointlySurjectivePrecoverage
Cover.mem_pretopology
mem_jointlySurjectiveTopology_iff_jointlySurjectivePretopology πŸ“–mathematicalβ€”CategoryTheory.Sieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
jointlySurjectiveTopology
CategoryTheory.Precoverage.coverings
CategoryTheory.Pretopology.toPrecoverage
Pullback.instHasPullbacks
jointlySurjectivePretopology
CategoryTheory.Sieve.arrows
β€”β€”
mem_pretopology_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Pretopology.toPrecoverage
Pullback.instHasPullbacks
pretopology
CategoryTheory.Presieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
β€”CategoryTheory.Precoverage.mem_iff_exists_zeroHypercover
Pullback.instHasPullbacks
pretopology_cover πŸ“–mathematicalβ€”CategoryTheory.Presieve
AlgebraicGeometry.Scheme
instCategory
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Pretopology.toPrecoverage
Pullback.instHasPullbacks
pretopology
CategoryTheory.Presieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
β€”Cover.mem_pretopology
pretopology_eq_inf πŸ“–mathematicalβ€”pretopology
CategoryTheory.Pretopology
AlgebraicGeometry.Scheme
instCategory
Pullback.instHasPullbacks
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Pretopology.instCompleteLattice
jointlySurjectivePretopology
CategoryTheory.MorphismProperty.pretopology
β€”Pullback.instHasPullbacks
pretopology_le_inf πŸ“–mathematicalβ€”pretopology
CategoryTheory.Pretopology
AlgebraicGeometry.Scheme
instCategory
Pullback.instHasPullbacks
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CategoryTheory.Pretopology.instCompleteLattice
jointlySurjectivePretopology
CategoryTheory.MorphismProperty.pretopology
β€”pretopology_eq_inf
pretopology_le_pretopology πŸ“–mathematicalCategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
instCategory
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.Pretopology
Pullback.instHasPullbacks
CategoryTheory.Pretopology.LE
pretopology
β€”pretopology_monotone
pretopology_monotone πŸ“–mathematicalCategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
instCategory
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.Pretopology
Pullback.instHasPullbacks
CategoryTheory.Pretopology.LE
pretopology
β€”precoverage_mono

AlgebraicGeometry.Scheme.Cover

Theorems

NameKindAssumesProvesValidatesDepends On
mem_grothendieckTopology πŸ“–mathematicalβ€”CategoryTheory.Sieve
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
AlgebraicGeometry.Scheme.grothendieckTopology
CategoryTheory.Sieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
β€”CategoryTheory.Precoverage.generate_mem_toGrothendieck
CategoryTheory.Precoverage.ZeroHypercover.memβ‚€
mem_pretopology πŸ“–mathematicalβ€”CategoryTheory.Presieve
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
Set
Set.instMembership
CategoryTheory.Precoverage.coverings
CategoryTheory.Pretopology.toPrecoverage
AlgebraicGeometry.Scheme.Pullback.instHasPullbacks
AlgebraicGeometry.Scheme.pretopology
CategoryTheory.Presieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
β€”CategoryTheory.Precoverage.ZeroHypercover.memβ‚€

---

← Back to Index