π Source: Mathlib/AlgebraicGeometry/Sites/Representability.lean
glueData
representableBy
toGlued
yonedaGluedToSheaf
yonedaIsoSheaf
comp_toGlued_eq
glueData_J
glueData_U
glueData_V
glueData_f
glueData_openCover_map
glueData_t
glueData_t'
instIsIsoSheafZariskiTopologyTypeYonedaGluedToSheaf
instIsLocallyInjectiveHomYonedaGluedToSheaf
instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType
instIsOpenImmersionToGlued
isRepresentable
yonedaGluedToSheaf_app_comp
yonedaGluedToSheaf_app_toGlued
yoneda_toGlued_yonedaGluedToSheaf
yoneda_toGlued_yonedaGluedToSheaf_assoc
CategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
AlgebraicGeometry.Scheme.GlueData.glued
CategoryTheory.MorphismProperty.relative.rep
CategoryTheory.Yoneda.yoneda_full
CategoryTheory.Functor.relativelyRepresentable.lift'_fst
CategoryTheory.Yoneda.yoneda_faithful
CategoryTheory.Category.assoc
CategoryTheory.Functor.relativelyRepresentable.lift'_snd
AlgebraicGeometry.Scheme.GlueData.glue_condition
CategoryTheory.Functor.relativelyRepresentable.symmetry_fst_assoc
CategoryTheory.GlueData.J
AlgebraicGeometry.Scheme.GlueData.toGlueData
CategoryTheory.GlueData.U
CategoryTheory.GlueData.V
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.GlueData.f
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.PreZeroHypercover.f
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.Scheme.GlueData.openCover
CategoryTheory.GlueData.t
CategoryTheory.Functor.relativelyRepresentable.symmetry
CategoryTheory.GlueData.t'
CategoryTheory.Functor.relativelyRepresentable.liftβ
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullbackβ.pβ
CategoryTheory.Functor.relativelyRepresentable.pullbackβ.pβ
CategoryTheory.Functor.relativelyRepresentable.pullbackβ.pβ
CategoryTheory.IsIso
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.GrothendieckTopology.yoneda
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
CategoryTheory.Limits.functorCategoryHasColimit
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
CategoryTheory.Sheaf.isLocallyBijective_iff_isIso
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
CategoryTheory.Sheaf.IsLocallyInjective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology
CategoryTheory.GrothendieckTopology.superset_covering
CategoryTheory.yonedaEquiv_naturality
EquivLike.toEmbeddingLike
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.GrothendieckTopology.pullback_stable
CategoryTheory.Sheaf.IsLocallySurjective
CategoryTheory.Presheaf.isLocallySurjective_of_isLocallySurjective_fac
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.Limits.colimit.ΞΉ_desc_assoc
CategoryTheory.Limits.colimit.ΞΉ_desc
AlgebraicGeometry.Scheme.GlueData.ΞΉ_isOpenImmersion
CategoryTheory.Functor.IsRepresentable
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf.Hom.val
Opposite.op
Opposite.unop
Quiver.Hom.op
CategoryTheory.NatTrans.naturality
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.yonedaEquiv
CategoryTheory.yonedaEquiv_comp
CategoryTheory.yonedaEquiv_yoneda_map
Equiv.injective
yonedaGluedToSheaf.eq_1
CategoryTheory.yonedaEquiv_apply
CategoryTheory.FunctorToTypes.comp
CategoryTheory.yoneda_map_app
CategoryTheory.Category.id_comp
CategoryTheory.yonedaEquiv_symm_app_apply
AlgebraicGeometry.Scheme.GlueData.sheafValGluedMk_val
Mathlib.Tactic.Reassoc.eq_whisker'
---
β Back to Index