Documentation Verification Report

Representability

πŸ“ Source: Mathlib/AlgebraicGeometry/Sites/Representability.lean

Statistics

MetricCount
DefinitionsglueData, representableBy, toGlued, yonedaGluedToSheaf, yonedaIsoSheaf
5
Theoremscomp_toGlued_eq, glueData_J, glueData_U, glueData_V, glueData_f, glueData_openCover_map, glueData_t, glueData_t', instIsIsoSheafZariskiTopologyTypeYonedaGluedToSheaf, instIsLocallyInjectiveHomYonedaGluedToSheaf, instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType, instIsOpenImmersionToGlued, isRepresentable, yonedaGluedToSheaf_app_comp, yonedaGluedToSheaf_app_toGlued, yoneda_toGlued_yonedaGluedToSheaf, yoneda_toGlued_yonedaGluedToSheaf_assoc
17
Total22

AlgebraicGeometry.Scheme.LocalRepresentability

Definitions

NameCategoryTheorems
glueData πŸ“–CompOp
16 mathmath: instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType, comp_toGlued_eq, glueData_openCover_map, yoneda_toGlued_yonedaGluedToSheaf_assoc, glueData_V, instIsIsoSheafZariskiTopologyTypeYonedaGluedToSheaf, glueData_f, glueData_t', yoneda_toGlued_yonedaGluedToSheaf, instIsLocallyInjectiveHomYonedaGluedToSheaf, instIsOpenImmersionToGlued, yonedaGluedToSheaf_app_comp, glueData_J, glueData_t, glueData_U, yonedaGluedToSheaf_app_toGlued
representableBy πŸ“–CompOpβ€”
toGlued πŸ“–CompOp
6 mathmath: comp_toGlued_eq, glueData_openCover_map, yoneda_toGlued_yonedaGluedToSheaf_assoc, yoneda_toGlued_yonedaGluedToSheaf, instIsOpenImmersionToGlued, yonedaGluedToSheaf_app_toGlued
yonedaGluedToSheaf πŸ“–CompOp
7 mathmath: instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType, yoneda_toGlued_yonedaGluedToSheaf_assoc, instIsIsoSheafZariskiTopologyTypeYonedaGluedToSheaf, yoneda_toGlued_yonedaGluedToSheaf, instIsLocallyInjectiveHomYonedaGluedToSheaf, yonedaGluedToSheaf_app_comp, yonedaGluedToSheaf_app_toGlued
yonedaIsoSheaf πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp_toGlued_eq πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.map
AlgebraicGeometry.Scheme.GlueData.glued
glueData
toGlued
β€”CategoryTheory.MorphismProperty.relative.rep
CategoryTheory.Yoneda.yoneda_full
CategoryTheory.Functor.relativelyRepresentable.lift'_fst
CategoryTheory.Yoneda.yoneda_faithful
CategoryTheory.Category.assoc
CategoryTheory.Functor.relativelyRepresentable.lift'_snd
AlgebraicGeometry.Scheme.GlueData.glue_condition
CategoryTheory.Functor.relativelyRepresentable.symmetry_fst_assoc
glueData_J πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.GlueData.J
AlgebraicGeometry.Scheme.GlueData.toGlueData
glueData
β€”β€”
glueData_U πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.GlueData.U
AlgebraicGeometry.Scheme.GlueData.toGlueData
glueData
β€”β€”
glueData_V πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.GlueData.V
AlgebraicGeometry.Scheme.GlueData.toGlueData
glueData
CategoryTheory.Functor.relativelyRepresentable.pullback
β€”β€”
glueData_f πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.GlueData.f
AlgebraicGeometry.Scheme.GlueData.toGlueData
glueData
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Yoneda.yoneda_full
β€”β€”
glueData_openCover_map πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.PreZeroHypercover.f
AlgebraicGeometry.Scheme.GlueData.glued
glueData
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
AlgebraicGeometry.Scheme.GlueData.openCover
toGlued
β€”β€”
glueData_t πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.GlueData.t
AlgebraicGeometry.Scheme.GlueData.toGlueData
glueData
CategoryTheory.Functor.relativelyRepresentable.symmetry
CategoryTheory.Yoneda.yoneda_full
β€”β€”
glueData_t' πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.GlueData.t'
AlgebraicGeometry.Scheme.GlueData.toGlueData
glueData
CategoryTheory.Functor.relativelyRepresentable.lift₃
CategoryTheory.Yoneda.yoneda_full
CategoryTheory.Yoneda.yoneda_faithful
CategoryTheory.Limits.pullback
CategoryTheory.Functor.relativelyRepresentable.pullback
CategoryTheory.Functor.relativelyRepresentable.fst'
CategoryTheory.Functor.relativelyRepresentable.pullback₃.pβ‚‚
CategoryTheory.Functor.relativelyRepresentable.pullback₃.p₃
CategoryTheory.Functor.relativelyRepresentable.pullback₃.p₁
β€”CategoryTheory.Yoneda.yoneda_full
instIsIsoSheafZariskiTopologyTypeYonedaGluedToSheaf πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.IsIso
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.GrothendieckTopology.yoneda
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
AlgebraicGeometry.Scheme.GlueData.glued
glueData
yonedaGluedToSheaf
β€”CategoryTheory.Limits.functorCategoryHasColimit
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
CategoryTheory.Sheaf.isLocallyBijective_iff_isIso
CategoryTheory.instReflectsIsomorphismsForgetTypeHom
CategoryTheory.hasSheafCompose_of_preservesMulticospan
CategoryTheory.Functor.corepresentable_preservesLimit
CategoryTheory.Types.instIsCorepresentableForgetTypeHom
instIsLocallyInjectiveHomYonedaGluedToSheaf
instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType
instIsLocallyInjectiveHomYonedaGluedToSheaf πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.Sheaf.IsLocallyInjective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.GrothendieckTopology.yoneda
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
AlgebraicGeometry.Scheme.GlueData.glued
glueData
yonedaGluedToSheaf
β€”AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
AlgebraicGeometry.Scheme.Cover.mem_grothendieckTopology
CategoryTheory.GrothendieckTopology.superset_covering
yonedaGluedToSheaf_app_comp
comp_toGlued_eq
yonedaGluedToSheaf_app_toGlued
CategoryTheory.yonedaEquiv_naturality
EquivLike.toEmbeddingLike
CategoryTheory.GrothendieckTopology.intersection_covering
CategoryTheory.GrothendieckTopology.pullback_stable
instIsLocallySurjectiveHomYonedaGluedToSheafOfIsLocallySurjectiveZariskiTopologyDescFunctorOppositeType πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.Sheaf.IsLocallySurjective
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Types.instFunLike
CategoryTheory.Types.instConcreteCategory
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.GrothendieckTopology.yoneda
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
AlgebraicGeometry.Scheme.GlueData.glued
glueData
yonedaGluedToSheaf
β€”CategoryTheory.Limits.functorCategoryHasColimit
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
CategoryTheory.Presheaf.isLocallySurjective_of_isLocallySurjective_fac
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
CategoryTheory.Limits.Sigma.hom_ext
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CategoryTheory.Limits.colimit.ΞΉ_desc_assoc
yoneda_toGlued_yonedaGluedToSheaf
CategoryTheory.Limits.colimit.ΞΉ_desc
instIsOpenImmersionToGlued πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
AlgebraicGeometry.Scheme.GlueData.glued
glueData
toGlued
β€”AlgebraicGeometry.Scheme.GlueData.ΞΉ_isOpenImmersion
isRepresentable πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.Functor.IsRepresentableβ€”CategoryTheory.Limits.functorCategoryHasColimit
CategoryTheory.Limits.Types.hasColimit
CategoryTheory.instSmallDiscrete
UnivLE.small
UnivLE.self
yonedaGluedToSheaf_app_comp πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.GrothendieckTopology.yoneda
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
AlgebraicGeometry.Scheme.GlueData.glued
glueData
CategoryTheory.Sheaf.Hom.val
yonedaGluedToSheaf
Opposite.op
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite.unop
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
β€”AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
CategoryTheory.NatTrans.naturality
yonedaGluedToSheaf_app_toGlued πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.NatTrans.app
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.GrothendieckTopology.yoneda
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
AlgebraicGeometry.Scheme.GlueData.glued
glueData
CategoryTheory.Sheaf.Hom.val
yonedaGluedToSheaf
Opposite.op
toGlued
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.yonedaEquiv
β€”AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
yoneda_toGlued_yonedaGluedToSheaf
CategoryTheory.yonedaEquiv_comp
CategoryTheory.yonedaEquiv_yoneda_map
yoneda_toGlued_yonedaGluedToSheaf πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.GlueData.glued
glueData
CategoryTheory.Functor.map
toGlued
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.GrothendieckTopology.yoneda
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
yonedaGluedToSheaf
β€”Equiv.injective
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
yonedaGluedToSheaf.eq_1
CategoryTheory.yonedaEquiv_apply
CategoryTheory.FunctorToTypes.comp
CategoryTheory.yoneda_map_app
CategoryTheory.Category.id_comp
CategoryTheory.yonedaEquiv_symm_app_apply
AlgebraicGeometry.Scheme.GlueData.sheafValGluedMk_val
yoneda_toGlued_yonedaGluedToSheaf_assoc πŸ“–mathematicalCategoryTheory.MorphismProperty.presheaf
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.IsOpenImmersion
CategoryTheory.Functor.obj
CategoryTheory.Functor
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
CategoryTheory.Functor.category
CategoryTheory.yoneda
CategoryTheory.Sheaf.val
AlgebraicGeometry.Scheme.zariskiTopology
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.GlueData.glued
glueData
CategoryTheory.Functor.map
toGlued
CategoryTheory.Sheaf.Hom.val
CategoryTheory.Sheaf
CategoryTheory.Sheaf.instCategorySheaf
CategoryTheory.GrothendieckTopology.yoneda
AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
yonedaGluedToSheaf
β€”AlgebraicGeometry.Scheme.subcanonical_zariskiTopology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
yoneda_toGlued_yonedaGluedToSheaf

---

← Back to Index