Documentation Verification Report

Small

πŸ“ Source: Mathlib/AlgebraicGeometry/Sites/Small.lean

Statistics

MetricCount
DefinitionstoPresieveOver, toPresieveOverProp, overGrothendieckTopology, overPretopology, smallGrothendieckTopology, smallGrothendieckTopologyOfLE, smallPretopology
7
TheoremsoverEquiv_generate_toPresieveOver_eq_ofArrows, toPresieveOver_le_arrows_iff, instLocallyCoverDenseOverTopMorphismPropertyOverForgetOverGrothendieckTopology, locallyCoverDense_of_le, mem_overGrothendieckTopology, mem_smallGrothendieckTopology, mem_toGrothendieck_smallPretopology, overGrothendieckTopology_eq_toGrothendieck_overPretopology, smallGrothendieckTopologyOfLE_eq_toGrothendieck_smallPretopology, smallGrothendieckTopology_eq_toGrothendieck_smallPretopology
10
Total17

AlgebraicGeometry.Scheme

Definitions

NameCategoryTheorems
overGrothendieckTopology πŸ“–CompOp
4 mathmath: overGrothendieckTopology_eq_toGrothendieck_overPretopology, locallyCoverDense_of_le, mem_overGrothendieckTopology, instLocallyCoverDenseOverTopMorphismPropertyOverForgetOverGrothendieckTopology
overPretopology πŸ“–CompOp
1 mathmath: overGrothendieckTopology_eq_toGrothendieck_overPretopology
smallGrothendieckTopology πŸ“–CompOp
2 mathmath: smallGrothendieckTopology_eq_toGrothendieck_smallPretopology, mem_smallGrothendieckTopology
smallGrothendieckTopologyOfLE πŸ“–CompOp
1 mathmath: smallGrothendieckTopologyOfLE_eq_toGrothendieck_smallPretopology
smallPretopology πŸ“–CompOp
3 mathmath: smallGrothendieckTopologyOfLE_eq_toGrothendieck_smallPretopology, smallGrothendieckTopology_eq_toGrothendieck_smallPretopology, mem_toGrothendieck_smallPretopology

Theorems

NameKindAssumesProvesValidatesDepends On
instLocallyCoverDenseOverTopMorphismPropertyOverForgetOverGrothendieckTopology πŸ“–mathematicalβ€”CategoryTheory.Functor.LocallyCoverDense
CategoryTheory.MorphismProperty.Over
AlgebraicGeometry.Scheme
instCategory
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.Comma.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.MorphismProperty.IsMultiplicative.instTop
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MorphismProperty.Over.forget
overGrothendieckTopology
β€”locallyCoverDense_of_le
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
le_rfl
locallyCoverDense_of_le πŸ“–mathematicalCategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
instCategory
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.Functor.LocallyCoverDense
CategoryTheory.MorphismProperty.Over
Top.top
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.Comma.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.MorphismProperty.IsMultiplicative.instTop
CategoryTheory.Over
CategoryTheory.instCategoryOver
CategoryTheory.MorphismProperty.Over.forget
overGrothendieckTopology
β€”CategoryTheory.MorphismProperty.IsMultiplicative.instTop
isJointlySurjectivePreserving
mem_overGrothendieckTopology
CategoryTheory.comp_over
Cover.Over.isOver_map
CategoryTheory.MorphismProperty.comp_mem
Cover.map_prop
CategoryTheory.MorphismProperty.Comma.prop
mem_overGrothendieckTopology πŸ“–mathematicalβ€”CategoryTheory.Sieve
CategoryTheory.Over
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.instCategoryOver
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
overGrothendieckTopology
CategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CategoryTheory.instCompleteLatticePresieve
Cover.toPresieveOver
CategoryTheory.Sieve.arrows
β€”isJointlySurjectivePreserving
CategoryTheory.Over.instHasPullbacks
Pullback.instHasPullbacks
overGrothendieckTopology_eq_toGrothendieck_overPretopology
mem_smallGrothendieckTopology πŸ“–mathematicalβ€”CategoryTheory.Sieve
CategoryTheory.MorphismProperty.Over
AlgebraicGeometry.Scheme
instCategory
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.Comma.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.MorphismProperty.IsMultiplicative.instTop
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
smallGrothendieckTopology
CategoryTheory.Presieve
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CategoryTheory.instCompleteLatticePresieve
Cover.toPresieveOverProp
CategoryTheory.Sieve.arrows
β€”CategoryTheory.MorphismProperty.IsMultiplicative.instTop
isJointlySurjectivePreserving
CategoryTheory.MorphismProperty.Over.hasPullbacks
Pullback.instHasPullbacks
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
smallGrothendieckTopology_eq_toGrothendieck_smallPretopology
mem_toGrothendieck_smallPretopology πŸ“–mathematicalβ€”CategoryTheory.Sieve
CategoryTheory.MorphismProperty.Over
AlgebraicGeometry.Scheme
instCategory
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.Comma.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.MorphismProperty.IsMultiplicative.instTop
Set
Set.instMembership
DFunLike.coe
CategoryTheory.GrothendieckTopology
CategoryTheory.GrothendieckTopology.instDFunLikeSetSieve
CategoryTheory.Pretopology.toGrothendieck
CategoryTheory.MorphismProperty.Over.hasPullbacks
Pullback.instHasPullbacks
smallPretopology
CategoryTheory.Sieve.arrows
CategoryTheory.Comma.left
CategoryTheory.MorphismProperty.Comma.toComma
CategoryTheory.CommaMorphism.left
CategoryTheory.MorphismProperty.Comma.Hom.toCommaMorphism
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
toLocallyRingedSpace
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
Hom.toLRSHom'
β€”CategoryTheory.MorphismProperty.IsMultiplicative.instTop
CategoryTheory.MorphismProperty.Over.hasPullbacks
Pullback.instHasPullbacks
CategoryTheory.Pretopology.mem_toGrothendieck
isJointlySurjectivePreserving
instJointlySurjectivePrecoverage
Cover.covers
Cover.Over.isOver_map
CategoryTheory.MorphismProperty.Comma.prop
Cover.map_prop
presieveβ‚€_mem_precoverage_iff
CategoryTheory.instHomIsOverLeftDiscretePUnit
overGrothendieckTopology_eq_toGrothendieck_overPretopology πŸ“–mathematicalβ€”overGrothendieckTopology
CategoryTheory.Pretopology.toGrothendieck
CategoryTheory.Over
AlgebraicGeometry.Scheme
instCategory
CategoryTheory.instCategoryOver
CategoryTheory.Over.instHasPullbacks
Pullback.instHasPullbacks
overPretopology
β€”CategoryTheory.GrothendieckTopology.ext
CategoryTheory.Over.instHasPullbacks
Pullback.instHasPullbacks
Set.ext
CategoryTheory.GrothendieckTopology.mem_over_iff
exists_cover_of_mem_grothendieckTopology
isJointlySurjectivePreserving
Cover.toPresieveOver_le_arrows_iff
mem_grothendieckTopology_iff
smallGrothendieckTopologyOfLE_eq_toGrothendieck_smallPretopology πŸ“–mathematicalCategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
instCategory
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
smallGrothendieckTopologyOfLE
CategoryTheory.Pretopology.toGrothendieck
CategoryTheory.MorphismProperty.Over
Top.top
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.Comma.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.MorphismProperty.IsMultiplicative.instTop
CategoryTheory.MorphismProperty.Over.hasPullbacks
Pullback.instHasPullbacks
smallPretopology
β€”CategoryTheory.GrothendieckTopology.ext
CategoryTheory.MorphismProperty.IsMultiplicative.instTop
CategoryTheory.MorphismProperty.Over.hasPullbacks
Pullback.instHasPullbacks
Set.ext
isJointlySurjectivePreserving
locallyCoverDense_of_le
CategoryTheory.comp_over
Cover.Over.isOver_map
CategoryTheory.MorphismProperty.comp_mem
Cover.map_prop
CategoryTheory.MorphismProperty.Comma.prop
CategoryTheory.Sieve.mem_functorPushforward_iff_of_full_of_faithful
CategoryTheory.MorphismProperty.instFullOverTopOverForget
CategoryTheory.MorphismProperty.instFaithfulOverTopOverForget
CategoryTheory.Sieve.functorPushforward_apply
smallGrothendieckTopology_eq_toGrothendieck_smallPretopology πŸ“–mathematicalβ€”smallGrothendieckTopology
CategoryTheory.Pretopology.toGrothendieck
CategoryTheory.MorphismProperty.Over
AlgebraicGeometry.Scheme
instCategory
Top.top
CategoryTheory.MorphismProperty
CategoryTheory.Category.toCategoryStruct
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
CategoryTheory.MorphismProperty.Comma.instCategory
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.MorphismProperty.IsMultiplicative.instTop
CategoryTheory.MorphismProperty.Over.hasPullbacks
Pullback.instHasPullbacks
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
smallPretopology
β€”smallGrothendieckTopologyOfLE_eq_toGrothendieck_smallPretopology
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
le_rfl

AlgebraicGeometry.Scheme.Cover

Definitions

NameCategoryTheorems
toPresieveOver πŸ“–CompOp
3 mathmath: AlgebraicGeometry.Scheme.mem_overGrothendieckTopology, toPresieveOver_le_arrows_iff, overEquiv_generate_toPresieveOver_eq_ofArrows
toPresieveOverProp πŸ“–CompOp
1 mathmath: AlgebraicGeometry.Scheme.mem_smallGrothendieckTopology

Theorems

NameKindAssumesProvesValidatesDepends On
overEquiv_generate_toPresieveOver_eq_ofArrows πŸ“–mathematicalβ€”DFunLike.coe
Equiv
CategoryTheory.Sieve
CategoryTheory.Over
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.instCategoryOver
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Sieve.overEquiv
CategoryTheory.Sieve.generate
toPresieveOver
CategoryTheory.Sieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
β€”AlgebraicGeometry.Scheme.isJointlySurjectivePreserving
CategoryTheory.Sieve.ext
CategoryTheory.comp_over
Over.isOver_map
CategoryTheory.Category.assoc
CategoryTheory.Over.OverMorphism.ext
toPresieveOver_le_arrows_iff πŸ“–mathematicalβ€”CategoryTheory.Presieve
CategoryTheory.Over
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
CategoryTheory.instCategoryOver
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CategoryTheory.instCompleteLatticePresieve
toPresieveOver
CategoryTheory.Sieve.arrows
CategoryTheory.Comma.left
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.fromPUnit
CategoryTheory.Presieve.ofArrows
CategoryTheory.PreZeroHypercover.Iβ‚€
CategoryTheory.Precoverage.ZeroHypercover.toPreZeroHypercover
AlgebraicGeometry.Scheme.precoverage
CategoryTheory.PreZeroHypercover.X
CategoryTheory.PreZeroHypercover.f
DFunLike.coe
Equiv
CategoryTheory.Sieve
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Sieve.overEquiv
β€”AlgebraicGeometry.Scheme.isJointlySurjectivePreserving
GaloisConnection.le_iff_le
GaloisInsertion.gc
overEquiv_generate_toPresieveOver_eq_ofArrows

---

← Back to Index