Documentation Verification Report

ValuativeCriterion

πŸ“ Source: Mathlib/AlgebraicGeometry/ValuativeCriterion.lean

Statistics

MetricCount
DefinitionsValuativeCommSq, K, R, algebra, commRing, i₁, iβ‚‚, ValuativeCriterion, Existence
9
Theoremseq_valuativeCriterion, of_valuativeCriterion, eq_valuativeCriterion, of_valuativeCriterion, valuativeCriterion, eq_valuativeCriterion, of_valuativeCriterion, commSq, domain, isFractionRing, valuationRing, eq, instIsLocalHomCarrierRingHomHomHomCommRingCat, of_specializingMap, specializingMap, stableUnderBaseChange, eq, existence, iff, uniqueness
20
Total29

AlgebraicGeometry

Definitions

NameCategoryTheorems
ValuativeCommSq πŸ“–CompDataβ€”
ValuativeCriterion πŸ“–CompOp
3 mathmath: ValuativeCriterion.iff, IsProper.eq_valuativeCriterion, ValuativeCriterion.eq

AlgebraicGeometry.IsProper

Theorems

NameKindAssumesProvesValidatesDepends On
eq_valuativeCriterion πŸ“–mathematicalβ€”AlgebraicGeometry.IsProper
CategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
AlgebraicGeometry.ValuativeCriterion
AlgebraicGeometry.QuasiCompact
AlgebraicGeometry.QuasiSeparated
AlgebraicGeometry.LocallyOfFiniteType
β€”AlgebraicGeometry.isProper_eq
AlgebraicGeometry.IsSeparated.eq_valuativeCriterion
AlgebraicGeometry.ValuativeCriterion.eq
AlgebraicGeometry.UniversallyClosed.eq_valuativeCriterion
inf_assoc
of_valuativeCriterion πŸ“–mathematicalAlgebraicGeometry.ValuativeCriterionAlgebraicGeometry.IsProperβ€”eq_valuativeCriterion

AlgebraicGeometry.IsSeparated

Theorems

NameKindAssumesProvesValidatesDepends On
eq_valuativeCriterion πŸ“–mathematicalβ€”AlgebraicGeometry.IsSeparated
CategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
AlgebraicGeometry.ValuativeCriterion.Uniqueness
AlgebraicGeometry.QuasiSeparated
β€”valuativeCriterion
instQuasiSeparated
of_valuativeCriterion
of_valuativeCriterion πŸ“–mathematicalAlgebraicGeometry.ValuativeCriterion.UniquenessAlgebraicGeometry.IsSeparatedβ€”AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.CommSq.w_assoc
AlgebraicGeometry.ValuativeCommSq.commSq
CategoryTheory.Limits.pullback.diagonal_fst_assoc
AlgebraicGeometry.ValuativeCommSq.domain
AlgebraicGeometry.ValuativeCommSq.valuationRing
AlgebraicGeometry.ValuativeCommSq.isFractionRing
CategoryTheory.Limits.pullback.diagonal_fst
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.diagonal_snd
CategoryTheory.Limits.pullback.condition
CategoryTheory.IsPullback.hom_ext
CategoryTheory.IsPullback.of_hasPullback
AlgebraicGeometry.UniversallyClosed.of_valuativeCriterion
AlgebraicGeometry.QuasiSeparated.quasiCompact_diagonal
AlgebraicGeometry.IsClosedImmersion.of_isPreimmersion
AlgebraicGeometry.IsImmersion.toIsPreimmersion
AlgebraicGeometry.IsImmersion.instDiagonalScheme
IsClosedMap.isClosed_range
AlgebraicGeometry.Scheme.Hom.isClosedMap
valuativeCriterion πŸ“–mathematicalβ€”AlgebraicGeometry.ValuativeCriterion.Uniquenessβ€”AlgebraicGeometry.ValuativeCommSq.commSq
CategoryTheory.CommSq.LiftStruct.ext
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.MorphismProperty.pullback_snd
CategoryTheory.MorphismProperty.instIsStableUnderBaseChangeAlongOfIsStableUnderBaseChange
AlgebraicGeometry.IsClosedImmersion.isStableUnderBaseChange
diagonal_isClosedImmersion
AlgebraicGeometry.HasAffineProperty.iff_of_isAffine
AlgebraicGeometry.IsClosedImmersion.hasAffineProperty
AlgebraicGeometry.isAffine_Spec
CategoryTheory.IsPullback.hom_ext
CategoryTheory.IsPullback.of_hasPullback
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.diagonal_fst
CategoryTheory.Category.comp_id
CategoryTheory.Limits.limit.lift_Ο€
CategoryTheory.Limits.pullback.diagonal_snd
CategoryTheory.Limits.pullback.lift_snd
RingHom.toMorphismProperty_respectsIso_iff
RingHom.injective_respectsIso
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
FaithfulSMul.algebraMap_injective
IsFractionRing.instFaithfulSMul
AlgebraicGeometry.ValuativeCommSq.isFractionRing
Function.Injective.of_comp
AlgebraicGeometry.Scheme.Hom.comp_appTop
AlgebraicGeometry.instHasAffinePropertyIsomorphismsSchemeAndIsAffineIsIsoCommRingCatAppTop
CategoryTheory.ConcreteCategory.isIso_iff_bijective
CommRingCat.forgetReflectIsos
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Limits.pullback.lift_fst
CategoryTheory.Limits.pullback.condition_assoc

AlgebraicGeometry.UniversallyClosed

Theorems

NameKindAssumesProvesValidatesDepends On
eq_valuativeCriterion πŸ“–mathematicalβ€”AlgebraicGeometry.UniversallyClosed
CategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
AlgebraicGeometry.ValuativeCriterion.Existence
AlgebraicGeometry.QuasiCompact
β€”AlgebraicGeometry.universallyClosed_eq_universallySpecializing
AlgebraicGeometry.ValuativeCriterion.Existence.eq
of_valuativeCriterion πŸ“–mathematicalAlgebraicGeometry.ValuativeCriterion.ExistenceAlgebraicGeometry.UniversallyClosedβ€”eq_valuativeCriterion

AlgebraicGeometry.ValuativeCommSq

Definitions

NameCategoryTheorems
K πŸ“–CompOp
2 mathmath: isFractionRing, commSq
R πŸ“–CompOp
4 mathmath: isFractionRing, valuationRing, commSq, domain
algebra πŸ“–CompOp
2 mathmath: isFractionRing, commSq
commRing πŸ“–CompOp
4 mathmath: isFractionRing, valuationRing, commSq, domain
i₁ πŸ“–CompOp
1 mathmath: commSq
iβ‚‚ πŸ“–CompOp
1 mathmath: commSq

Theorems

NameKindAssumesProvesValidatesDepends On
commSq πŸ“–mathematicalβ€”CategoryTheory.CommSq
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.Spec
CommRingCat.of
K
EuclideanDomain.toCommRing
Field.toEuclideanDomain
field
R
commRing
i₁
AlgebraicGeometry.Spec.map
CommRingCat.ofHom
algebraMap
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
algebra
iβ‚‚
β€”β€”
domain πŸ“–mathematicalβ€”IsDomain
R
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
β€”β€”
isFractionRing πŸ“–mathematicalβ€”IsFractionRing
R
CommRing.toCommSemiring
commRing
K
Semifield.toCommSemiring
Field.toSemifield
field
algebra
β€”β€”
valuationRing πŸ“–mathematicalβ€”ValuationRing
R
commRing
domain
β€”β€”

AlgebraicGeometry.ValuativeCriterion

Definitions

NameCategoryTheorems
Existence πŸ“–CompOp
8 mathmath: iff, AlgebraicGeometry.Proj.valuativeCriterion_existence, Existence.eq, Existence.stableUnderBaseChange, Existence.of_specializingMap, existence, AlgebraicGeometry.UniversallyClosed.eq_valuativeCriterion, eq

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–mathematicalβ€”AlgebraicGeometry.ValuativeCriterion
CategoryTheory.MorphismProperty
AlgebraicGeometry.Scheme
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.Scheme.instCategory
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
Existence
Uniqueness
β€”CategoryTheory.MorphismProperty.ext
iff
existence πŸ“–mathematicalAlgebraicGeometry.ValuativeCriterionExistenceβ€”iff
iff πŸ“–mathematicalβ€”AlgebraicGeometry.ValuativeCriterion
Existence
Uniqueness
β€”AlgebraicGeometry.ValuativeCommSq.commSq
uniqueness πŸ“–mathematicalAlgebraicGeometry.ValuativeCriterionUniquenessβ€”iff

AlgebraicGeometry.ValuativeCriterion.Existence

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–mathematicalβ€”AlgebraicGeometry.ValuativeCriterion.Existence
CategoryTheory.MorphismProperty.universally
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.topologically
SpecializingMap
β€”CategoryTheory.MorphismProperty.ext
CategoryTheory.MorphismProperty.universally_mono
specializingMap
CategoryTheory.MorphismProperty.IsStableUnderBaseChange.universally_eq
stableUnderBaseChange
of_specializingMap
instIsLocalHomCarrierRingHomHomHomCommRingCat πŸ“–mathematicalβ€”IsLocalHom
CommRingCat.carrier
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
CommRingCat.commRing
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
RingHom.instFunLike
CommRingCat.Hom.hom
CategoryTheory.Iso.hom
CommRingCat
CommRingCat.instCategory
β€”isLocalHom_of_isIso
CategoryTheory.Iso.isIso_hom
of_specializingMap πŸ“–mathematicalCategoryTheory.MorphismProperty.universally
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.topologically
SpecializingMap
AlgebraicGeometry.ValuativeCriterion.Existenceβ€”AlgebraicGeometry.ValuativeCommSq.commSq
AlgebraicGeometry.Scheme.Pullback.instHasPullback
CategoryTheory.IsPullback.of_hasPullback
ValuationRing.isLocalRing
EuclideanDomain.toNontrivial
ValuationRing.toPreValuationRing
instIsDomain
ValuationRing.of_field
IsDomain.toNontrivial
IsLocalRing.specializes_closedPoint
CommRingCat.Colimits.hasColimits_commRingCat
Inseparable.of_eq
isLocalHom_of_isIso
CategoryTheory.Iso.isIso_hom
RingHom.isLocalHom_comp
AlgebraicGeometry.Scheme.Hom.instIsLocalHomCarrierStalkCommRingCatPresheafCoeContinuousMapCarrierCarrierHomTopCatBaseRingHomHomStalkMap
AlgebraicGeometry.stalkClosedPointIso_inv
CategoryTheory.Category.assoc
Specializes.mem_open
TopologicalSpace.Opens.isOpen
TopCat.Presheaf.germ_stalkSpecializes_assoc
AlgebraicGeometry.Scheme.Hom.germ_stalkMap_assoc
AlgebraicGeometry.Scheme.preimage_eq_top_of_closedPoint_mem
AlgebraicGeometry.Scheme.germ_stalkClosedPointTo
AlgebraicGeometry.Scheme.Hom.comp_app_assoc
CategoryTheory.Limits.pullback.lift_fst
CategoryTheory.Functor.mapIso_refl
CategoryTheory.Iso.refl_trans
AlgebraicGeometry.Scheme.Ξ“SpecIso_naturality
CategoryTheory.Iso.inv_hom_id_assoc
bijective_rangeRestrict_comp_of_valuationRing
AlgebraicGeometry.LocallyRingedSpace.instIsLocalRingCarrierStalkCommRingCatPresheaf
CommRingCat.hom_ext_iff
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
SubringClass.toSubsemiringClass
Subring.instSubringClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
CommRingCat.hom_ext
RingHom.ext
RingEquiv.symm_apply_apply
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.hom_inv_id
RingEquiv.apply_symm_apply
AlgebraicGeometry.Spec.map_comp
AlgebraicGeometry.Scheme.SpecMap_stalkMap_fromSpecStalk
AlgebraicGeometry.Scheme.SpecMap_stalkSpecializes_fromSpecStalk_assoc
AlgebraicGeometry.Scheme.Spec_stalkClosedPointTo_fromSpecStalk_assoc
CategoryTheory.Limits.limit.lift_Ο€
AlgebraicGeometry.Scheme.SpecMap_stalkMap_fromSpecStalk_assoc
AlgebraicGeometry.Spec.map_comp_assoc
AlgebraicGeometry.Spec_stalkClosedPointIso
CategoryTheory.Iso.inv_hom_id
AlgebraicGeometry.Spec.map_id
CategoryTheory.Category.id_comp
specializingMap πŸ“–mathematicalAlgebraicGeometry.ValuativeCriterion.ExistenceSpecializingMap
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
CommRingCat
CommRingCat.instCategory
AlgebraicGeometry.SheafedSpace.toPresheafedSpace
AlgebraicGeometry.LocallyRingedSpace.toSheafedSpace
AlgebraicGeometry.Scheme.toLocallyRingedSpace
AlgebraicGeometry.SheafedSpace.instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.LocallyRingedSpace.Hom.toHom
AlgebraicGeometry.Scheme.Hom.toLRSHom'
β€”CommRingCat.Colimits.hasColimits_commRingCat
SubringClass.toSubsemiringClass
Subring.instSubringClass
IsLocalRing.exists_factor_valuationRing
AlgebraicGeometry.LocallyRingedSpace.instIsLocalRingCarrierStalkCommRingCatPresheaf
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
ValuationSubring.instSubringClass
AlgebraicGeometry.Scheme.fromSpecResidueField.eq_1
CategoryTheory.Category.assoc
AlgebraicGeometry.Scheme.SpecMap_stalkMap_fromSpecStalk
AlgebraicGeometry.Scheme.SpecMap_stalkSpecializes_fromSpecStalk
ValuationSubring.instIsDomainSubtypeMem
ValuationSubring.instValuationRingSubtypeMem
ValuationSubring.instIsFractionRingSubtypeMem
AlgebraicGeometry.ValuativeCommSq.commSq
CategoryTheory.CommSq.HasLift.exists_lift
ValuationSubring.isLocalRing
ValuationRing.isLocalRing
EuclideanDomain.toNontrivial
ValuationRing.toPreValuationRing
instIsDomain
ValuationRing.of_field
AlgebraicGeometry.Scheme.fromSpecResidueField_apply
Specializes.map
IsLocalRing.specializes_closedPoint
AlgebraicGeometry.Scheme.Hom.continuous
AlgebraicGeometry.Scheme.Hom.comp_apply
IsLocalRing.comap_closedPoint
AlgebraicGeometry.Scheme.fromSpecStalk_closedPoint
stableUnderBaseChange πŸ“–mathematicalβ€”CategoryTheory.MorphismProperty.IsStableUnderBaseChange
AlgebraicGeometry.Scheme
AlgebraicGeometry.Scheme.instCategory
AlgebraicGeometry.ValuativeCriterion.Existence
β€”AlgebraicGeometry.ValuativeCommSq.domain
AlgebraicGeometry.ValuativeCommSq.valuationRing
AlgebraicGeometry.ValuativeCommSq.isFractionRing
CategoryTheory.Category.assoc
CategoryTheory.CommSq.w
CategoryTheory.IsPullback.toCommSq
Mathlib.Tactic.Reassoc.eq_whisker'
AlgebraicGeometry.ValuativeCommSq.commSq
CategoryTheory.CommSq.HasLift.exists_lift
CategoryTheory.IsPullback.hom_ext
CategoryTheory.IsPullback.lift_fst
CategoryTheory.IsPullback.lift_snd

---

← Back to Index