Documentation Verification Report

AlternatingFaceMapComplex

📁 Source: Mathlib/AlgebraicTopology/AlternatingFaceMapComplex.lean

Statistics

MetricCount
Definitionsmap, obj, objD, map, obj, objD, ε, alternatingCofaceMapComplex, alternatingFaceMapComplex, inclusionOfMooreComplex, inclusionOfMooreComplexMap
11
Theoremsd_eq_unop_d, d_squared, d_squared, map_f, obj_X, obj_d_eq, ε_app_f_succ, ε_app_f_zero, alternatingCofaceMapComplex_map, alternatingCofaceMapComplex_obj, alternatingFaceMapComplex_map_f, alternatingFaceMapComplex_obj_X, alternatingFaceMapComplex_obj_d, inclusionOfMooreComplexMap_f, inclusionOfMooreComplex_app, karoubi_alternatingFaceMapComplex_d, map_alternatingFaceMapComplex
17
Total28

AlgebraicTopology

Definitions

NameCategoryTheorems
alternatingCofaceMapComplex 📖CompOp
3 mathmath: CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_map_f, alternatingCofaceMapComplex_obj, alternatingCofaceMapComplex_map
alternatingFaceMapComplex 📖CompOp
22 mathmath: DoldKan.natTransPInfty_app, DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, AlternatingFaceMapComplex.ε_app_f_succ, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_inv, alternatingFaceMapComplex_obj_d, alternatingFaceMapComplex_map_f, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, AlternatingFaceMapComplex.ε_app_f_zero, inclusionOfMooreComplex_app, DoldKan.inclusionOfMooreComplexMap_comp_PInfty, DoldKan.natTransP_app, map_alternatingFaceMapComplex, DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, DoldKan.natTransPInfty_f_app, DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, inclusionOfMooreComplexMap_f, alternatingFaceMapComplex_obj_X, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom, DoldKan.natTransQ_app
inclusionOfMooreComplex 📖CompOp
1 mathmath: inclusionOfMooreComplex_app
inclusionOfMooreComplexMap 📖CompOp
11 mathmath: DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, inclusionOfMooreComplex_app, DoldKan.inclusionOfMooreComplexMap_comp_PInfty, DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, inclusionOfMooreComplexMap_f, DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom

Theorems

NameKindAssumesProvesValidatesDepends On
alternatingCofaceMapComplex_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
alternatingCofaceMapComplex
AlternatingCofaceMapComplex.map
AddRightCancelSemigroup.toIsRightCancelAdd
alternatingCofaceMapComplex_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
alternatingCofaceMapComplex
AlternatingCofaceMapComplex.obj
AddRightCancelSemigroup.toIsRightCancelAdd
alternatingFaceMapComplex_map_f 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
HomologicalComplex.instCategory
alternatingFaceMapComplex
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
AddRightCancelSemigroup.toIsRightCancelAdd
alternatingFaceMapComplex_obj_X 📖mathematicalHomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
HomologicalComplex.instCategory
alternatingFaceMapComplex
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
AddRightCancelSemigroup.toIsRightCancelAdd
alternatingFaceMapComplex_obj_d 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
HomologicalComplex.instCategory
alternatingFaceMapComplex
AlternatingFaceMapComplex.objD
AddRightCancelSemigroup.toIsRightCancelAdd
ChainComplex.of_d
AlternatingFaceMapComplex.d_squared
inclusionOfMooreComplexMap_f 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
HomologicalComplex.instCategory
normalizedMooreComplex
alternatingFaceMapComplex
inclusionOfMooreComplexMap
CategoryTheory.Subobject.arrow
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
NormalizedMooreComplex.objX
AddRightCancelSemigroup.toIsRightCancelAdd
ChainComplex.ofHom_f
NormalizedMooreComplex.d_squared
inclusionOfMooreComplex_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
normalizedMooreComplex
alternatingFaceMapComplex
inclusionOfMooreComplex
inclusionOfMooreComplexMap
AddRightCancelSemigroup.toIsRightCancelAdd
karoubi_alternatingFaceMapComplex_d 📖mathematicalCategoryTheory.Idempotents.Karoubi.Hom.f
HomologicalComplex.X
CategoryTheory.Idempotents.Karoubi
CategoryTheory.Idempotents.Karoubi.instCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Idempotents.instPreadditiveKaroubi
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlternatingFaceMapComplex.obj
CategoryTheory.Idempotents.KaroubiFunctorCategoryEmbedding.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
HomologicalComplex.d
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Idempotents.Karoubi.X
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Idempotents.Karoubi.p
AddRightCancelSemigroup.toIsRightCancelAdd
AlternatingFaceMapComplex.obj_d_eq
CategoryTheory.Idempotents.Karoubi.sum_hom
Finset.sum_congr
CategoryTheory.Idempotents.Karoubi.zsmul_hom
CategoryTheory.Preadditive.comp_sum
CategoryTheory.Preadditive.comp_zsmul
map_alternatingFaceMapComplex 📖mathematicalCategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
ChainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex
alternatingFaceMapComplex
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.SimplicialObject.whiskering
CategoryTheory.Functor.ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomologicalComplex.ext
alternatingFaceMapComplex_obj_d
CategoryTheory.Functor.map_sum
Finset.sum_congr
CategoryTheory.Functor.map_zsmul
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
HomologicalComplex.hom_ext
HomologicalComplex.eqToHom_f

AlgebraicTopology.AlternatingCofaceMapComplex

Definitions

NameCategoryTheorems
map 📖CompOp
1 mathmath: AlgebraicTopology.alternatingCofaceMapComplex_map
obj 📖CompOp
1 mathmath: AlgebraicTopology.alternatingCofaceMapComplex_obj
objD 📖CompOp
2 mathmath: d_eq_unop_d, d_squared

Theorems

NameKindAssumesProvesValidatesDepends On
d_eq_unop_d 📖mathematicalobjD
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Equivalence.functor
CategoryTheory.cosimplicialSimplicialEquiv
Opposite.op
AlgebraicTopology.AlternatingFaceMapComplex.objD
CategoryTheory.instPreadditiveOpposite
CategoryTheory.unop_sum
Finset.sum_congr
d_squared 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
objD
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
d_eq_unop_d
AlgebraicTopology.AlternatingFaceMapComplex.d_squared

AlgebraicTopology.AlternatingFaceMapComplex

Definitions

NameCategoryTheorems
map 📖CompOp
4 mathmath: AlgebraicTopology.DoldKan.N₁_map_f, map_f, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality
obj 📖CompOp
107 mathmath: AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex, AlgebraicTopology.DoldKan.P_f_0_eq, AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f, AlgebraicTopology.DoldKan.σ_comp_PInfty_assoc, AlgebraicTopology.DoldKan.N₁_map_f, AlgebraicTopology.DoldKan.PInfty_comp_QInfty, AlgebraicTopology.DoldKan.HigherFacesVanish.of_P, SimplicialObject.Splitting.PInfty_comp_πSummand_id, AlgebraicTopology.DoldKan.PInfty_idem, AlgebraicTopology.DoldKan.homotopyPInftyToId_hom, AlgebraicTopology.DoldKan.QInfty_idem, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_f, AlgebraicTopology.DoldKan.PInfty_f_naturality_assoc, AlgebraicTopology.DoldKan.comp_P_eq_self_iff, AlgebraicTopology.DoldKan.QInfty_idem_assoc, map_f, AlgebraicTopology.DoldKan.QInfty_f, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f_assoc, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, AlgebraicTopology.DoldKan.P_f_idem_assoc, AlgebraicTopology.DoldKan.QInfty_f_0, AlgebraicTopology.DoldKan.map_Hσ, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq_zero, AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero, SimplicialObject.Splitting.cofan_inj_comp_PInfty_eq_zero, SimplicialObject.Splitting.ιSummand_comp_d_comp_πSummand_eq_zero, AlgebraicTopology.DoldKan.P_f_idem, AlgebraicTopology.DoldKan.PInfty_idem_assoc, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty, AlgebraicTopology.DoldKan.QInfty_f_naturality_assoc, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, AlgebraicTopology.DoldKan.map_PInfty_f, AlgebraicTopology.DoldKan.P_succ, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, AlgebraicTopology.DoldKan.Hσ_eq_zero, obj_d_eq, AlgebraicTopology.DoldKan.QInfty_comp_PInfty, AlgebraicTopology.DoldKan.Q_idem, AlgebraicTopology.DoldKan.Q_idem_assoc, AlgebraicTopology.DoldKan.PInfty_f, AlgebraicTopology.DoldKan.Q_f_0_eq, AlgebraicTopology.DoldKan.QInfty_f_naturality, AlgebraicTopology.DoldKan.P_f_naturality_assoc, AlgebraicTopology.DoldKan.map_P, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc, AlgebraicTopology.DoldKan.P_idem, AlgebraicTopology.DoldKan.N₁_obj_X, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self_assoc, AlgebraicTopology.DoldKan.Q_is_eventually_constant, AlgebraicTopology.DoldKan.Q_f_naturality_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc, SimplicialObject.Splitting.PInfty_comp_πSummand_id_assoc, AlgebraicTopology.DoldKan.Q_succ, AlgebraicTopology.DoldKan.P_add_Q, AlgebraicTopology.DoldKan.hσ'_eq, AlgebraicTopology.DoldKan.MorphComponents.id_a, AlgebraicTopology.DoldKan.PInfty_f_0, AlgebraicTopology.DoldKan.PInfty_f_naturality, AlgebraicTopology.DoldKan.hσ'_eq_zero, AlgebraicTopology.DoldKan.PInfty_f_idem_assoc, AlgebraicTopology.DoldKan.P_is_eventually_constant, AlgebraicTopology.DoldKan.map_Q, AlgebraicTopology.DoldKan.PInfty_f_idem, AlgebraicTopology.DoldKan.N₂_obj_p_f, AlgebraicTopology.DoldKan.σ_comp_PInfty, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, AlgebraicTopology.DoldKan.P_zero, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality, AlgebraicTopology.DoldKan.karoubi_PInfty_f, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, AlgebraicTopology.DoldKan.homotopyPToId_eventually_constant, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq, AlgebraicTopology.DoldKan.QInfty_f_idem_assoc, AlgebraicTopology.DoldKan.QInfty_f_idem, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f, AlgebraicTopology.DoldKan.QInfty_comp_PInfty_assoc, AlgebraicTopology.DoldKan.decomposition_Q, AlgebraicTopology.DoldKan.σ_comp_P_eq_zero, obj_X, AlgebraicTopology.DoldKan.Q_f_idem_assoc, AlgebraicTopology.DoldKan.Q_f_naturality, AlgebraicTopology.DoldKan.Q_zero, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f_assoc, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex_assoc, AlgebraicTopology.DoldKan.P_idem_assoc, AlgebraicTopology.DoldKan.PInfty_comp_QInfty_assoc, AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty_assoc, AlgebraicTopology.DoldKan.map_hσ', AlgebraicTopology.DoldKan.N₂_map_f_f, AlgebraicTopology.DoldKan.P_f_naturality, AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty, AlgebraicTopology.DoldKan.hσ'_naturality, AlgebraicTopology.DoldKan.P_add_Q_f, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty, AlgebraicTopology.DoldKan.PInfty_add_QInfty, AlgebraicTopology.DoldKan.Q_f_idem
objD 📖CompOp
3 mathmath: AlgebraicTopology.AlternatingCofaceMapComplex.d_eq_unop_d, AlgebraicTopology.alternatingFaceMapComplex_obj_d, d_squared
ε 📖CompOp
2 mathmath: ε_app_f_succ, ε_app_f_zero

Theorems

NameKindAssumesProvesValidatesDepends On
d_squared 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
objD
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Preadditive.comp_sum
Finset.sum_congr
CategoryTheory.Preadditive.sum_comp
Finset.univ_product_univ
Finset.sum_add_sum_compl
eq_neg_iff_add_eq_zero
Finset.sum_neg_distrib
lt_of_le_of_lt
Finset.mem_filter
Finset.sum_bij
Finset.compl_filter
CategoryTheory.Preadditive.comp_zsmul
CategoryTheory.Preadditive.zsmul_comp
smul_smul
pow_add
pow_one
mul_neg
mul_one
neg_neg
mul_comm
Fin.le_iff_val_le_val
CategoryTheory.SimplicialObject.δ_comp_δ''
map_f 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
obj
map
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
AddRightCancelSemigroup.toIsRightCancelAdd
obj_X 📖mathematicalHomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
obj
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
AddRightCancelSemigroup.toIsRightCancelAdd
obj_d_eq 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
obj
Finset.sum
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Finset.univ
Fin.fintype
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Monoid.toNatPow
Int.instMonoid
CategoryTheory.SimplicialObject.δ
ChainComplex.of_d
d_squared
ε_app_f_succ 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
AlgebraicTopology.alternatingFaceMapComplex
CategoryTheory.SimplicialObject.Augmented.point
ChainComplex.single₀
CategoryTheory.NatTrans.app
ε
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
ε_app_f_zero 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject.Augmented
CategoryTheory.SimplicialObject.instCategoryAugmented
ChainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.comp
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.Augmented.drop
AlgebraicTopology.alternatingFaceMapComplex
CategoryTheory.SimplicialObject.Augmented.point
ChainComplex.single₀
CategoryTheory.NatTrans.app
ε
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.SimplicialObject.const
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
Opposite.op
ChainComplex.toSingle₀Equiv_symm_apply_f_zero
AddRightCancelSemigroup.toIsRightCancelAdd

---

← Back to Index