Documentation Verification Report

CechNerve

📁 Source: Mathlib/AlgebraicTopology/CechNerve.lean

Statistics

MetricCount
DefinitionsaugmentedCechConerve, augmentedCechNerve, cechConerve, cechNerve, mapAugmentedCechConerve, mapAugmentedCechNerve, mapCechConerve, mapCechNerve, iso, uniqueToWideCospanNone, wideCospan, limitCone, limitIsoPi, augmentedCechConerve, cechConerve, cechConerveAdjunction, cechConerveEquiv, equivalenceLeftToRight, equivalenceRightToLeft, augmentedCechNerve, cechNerve, cechNerveAdjunction, cechNerveEquiv, equivalenceLeftToRight, equivalenceRightToLeft, cechNerveTerminalFrom
26
TheoremsaugmentedCechConerve_hom_app, augmentedCechConerve_left, augmentedCechConerve_right, augmentedCechNerve_hom_app, augmentedCechNerve_left, augmentedCechNerve_right, cechConerve_map, cechConerve_obj, cechNerve_map, cechNerve_obj, mapAugmentedCechConerve_left, mapAugmentedCechConerve_right, mapAugmentedCechNerve_left, mapAugmentedCechNerve_right, mapCechConerve_app, mapCechNerve_app, hasLimit_wideCospan, hasWidePullback, hasWidePullback', limitIsoPi_hom_comp_pi, limitIsoPi_hom_comp_pi_assoc, limitIsoPi_inv_comp_pi, limitIsoPi_inv_comp_pi_assoc, augmentedCechConerve_map, augmentedCechConerve_obj, cechConerveEquiv_apply, cechConerveEquiv_symm_apply, cechConerve_map, cechConerve_obj, equivalenceLeftToRight_left, equivalenceLeftToRight_right, equivalenceRightToLeft_left, equivalenceRightToLeft_right_app, augmentedCechNerve_map_left_app, augmentedCechNerve_map_right, augmentedCechNerve_obj_hom_app, augmentedCechNerve_obj_left_map, augmentedCechNerve_obj_left_obj, augmentedCechNerve_obj_right, cechNerveEquiv_apply, cechNerveEquiv_symm_apply, cechNerve_map, cechNerve_obj, equivalenceLeftToRight_left_app, equivalenceLeftToRight_right, equivalenceRightToLeft_left, equivalenceRightToLeft_right
47
Total73

CategoryTheory

Definitions

NameCategoryTheorems
cechNerveTerminalFrom 📖CompOp

CategoryTheory.Arrow

Definitions

NameCategoryTheorems
augmentedCechConerve 📖CompOp
12 mathmath: mapAugmentedCechConerve_right, CategoryTheory.CosimplicialObject.cechConerveEquiv_symm_apply, CategoryTheory.CosimplicialObject.augmentedCechConerve_obj, mapAugmentedCechConerve_left, augmentedCechConerve_right, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_right_app, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_left, CategoryTheory.CosimplicialObject.equivalenceRightToLeft_left, CategoryTheory.CosimplicialObject.equivalenceLeftToRight_right, CategoryTheory.CosimplicialObject.cechConerveEquiv_apply, augmentedCechConerve_left, augmentedCechConerve_hom_app
augmentedCechNerve 📖CompOp
13 mathmath: augmentedCechNerve_hom_app, mapAugmentedCechNerve_left, augmentedCechNerve_left, CategoryTheory.SimplicialObject.equivalenceRightToLeft_right, augmentedCechNerve_right, CategoryTheory.SimplicialObject.cechNerveEquiv_symm_apply, CategoryTheory.SimplicialObject.equivalenceRightToLeft_left, CategoryTheory.SimplicialObject.cechNerveEquiv_apply, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, CategoryTheory.SimplicialObject.equivalenceLeftToRight_left_app, CategoryTheory.SimplicialObject.augmentedCechNerve_map_right, mapAugmentedCechNerve_right, CategoryTheory.SimplicialObject.equivalenceLeftToRight_right
cechConerve 📖CompOp
6 mathmath: mapCechConerve_app, augmentedCechConerve_right, cechConerve_map, cechConerve_obj, CategoryTheory.CosimplicialObject.cechConerve_obj, augmentedCechConerve_hom_app
cechNerve 📖CompOp
11 mathmath: augmentedCechNerve_hom_app, mapCechNerve_app, AugmentedCechNerve.ExtraDegeneracy.s_comp_base, cechNerve_obj, augmentedCechNerve_left, CategoryTheory.SimplicialObject.cechNerve_obj, AugmentedCechNerve.ExtraDegeneracy.s_comp_π_0, AugmentedCechNerve.ExtraDegeneracy.s_comp_π_succ, cechNerve_map, CategoryTheory.SimplicialObject.augmentedCechNerve_map_left_app, CategoryTheory.SimplicialObject.augmentedCechNerve_obj_hom_app
mapAugmentedCechConerve 📖CompOp
3 mathmath: mapAugmentedCechConerve_right, mapAugmentedCechConerve_left, CategoryTheory.CosimplicialObject.augmentedCechConerve_map
mapAugmentedCechNerve 📖CompOp
2 mathmath: mapAugmentedCechNerve_left, mapAugmentedCechNerve_right
mapCechConerve 📖CompOp
3 mathmath: mapAugmentedCechConerve_right, mapCechConerve_app, CategoryTheory.CosimplicialObject.cechConerve_map
mapCechNerve 📖CompOp
3 mathmath: mapCechNerve_app, mapAugmentedCechNerve_left, CategoryTheory.SimplicialObject.cechNerve_map

Theorems

NameKindAssumesProvesValidatesDepends On
augmentedCechConerve_hom_app 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
cechConerve
augmentedCechConerve
CategoryTheory.Limits.WidePushout.head
SimplexCategory.len
augmentedCechConerve_left 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
augmentedCechConerve
augmentedCechConerve_right 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
augmentedCechConerve
cechConerve
augmentedCechNerve_hom_app 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
cechNerve
CategoryTheory.SimplicialObject.const
augmentedCechNerve
CategoryTheory.Limits.WidePullback.base
SimplexCategory.len
Opposite.unop
augmentedCechNerve_left 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
augmentedCechNerve
cechNerve
augmentedCechNerve_right 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
augmentedCechNerve
cechConerve_map 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
SimplexCategory
SimplexCategory.smallCategory
cechConerve
CategoryTheory.Limits.WidePushout.desc
SimplexCategory.len
CategoryTheory.Limits.widePushout
CategoryTheory.Limits.WidePushout.head
CategoryTheory.Limits.WidePushout.ι
CategoryTheory.Functor.obj
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
cechConerve_obj 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
SimplexCategory
SimplexCategory.smallCategory
cechConerve
CategoryTheory.Limits.widePushout
SimplexCategory.len
cechNerve_map 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
cechNerve
CategoryTheory.Limits.WidePullback.lift
SimplexCategory.len
Opposite.unop
CategoryTheory.Limits.widePullback
CategoryTheory.Limits.WidePullback.base
CategoryTheory.Limits.WidePullback.π
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
cechNerve_obj 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
cechNerve
CategoryTheory.Limits.widePullback
SimplexCategory.len
Opposite.unop
mapAugmentedCechConerve_left 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
augmentedCechConerve
mapAugmentedCechConerve
mapAugmentedCechConerve_right 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.CosimplicialObject
CategoryTheory.CosimplicialObject.instCategory
CategoryTheory.CosimplicialObject.const
augmentedCechConerve
mapAugmentedCechConerve
mapCechConerve
mapAugmentedCechNerve_left 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
augmentedCechNerve
mapAugmentedCechNerve
mapCechNerve
mapAugmentedCechNerve_right 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.SimplicialObject.const
augmentedCechNerve
mapAugmentedCechNerve
mapCechConerve_app 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
cechConerve
mapCechConerve
CategoryTheory.Limits.WidePushout.desc
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.left
CategoryTheory.Limits.WidePushout.head
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.WidePushout.ι
mapCechNerve_app 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
cechNerve
mapCechNerve
CategoryTheory.Limits.WidePullback.lift
SimplexCategory.len
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.WidePullback.base
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.WidePullback.π
CategoryTheory.CommaMorphism.left

CategoryTheory.CechNerveTerminalFrom

Definitions

NameCategoryTheorems
iso 📖CompOp
uniqueToWideCospanNone 📖CompOp
wideCospan 📖CompOp
5 mathmath: hasLimit_wideCospan, wideCospan.limitIsoPi_inv_comp_pi, wideCospan.limitIsoPi_hom_comp_pi_assoc, wideCospan.limitIsoPi_inv_comp_pi_assoc, wideCospan.limitIsoPi_hom_comp_pi

Theorems

NameKindAssumesProvesValidatesDepends On
hasLimit_wideCospan 📖mathematicalCategoryTheory.Limits.HasLimit
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
wideCospan
hasWidePullback
hasWidePullback 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Limits.terminal
CategoryTheory.Limits.terminal.from
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
nonempty_fintype
hasWidePullback' 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Limits.terminal
CategoryTheory.Limits.terminal.from
hasWidePullback

CategoryTheory.CechNerveTerminalFrom.wideCospan

Definitions

NameCategoryTheorems
limitCone 📖CompOp
limitIsoPi 📖CompOp
4 mathmath: limitIsoPi_inv_comp_pi, limitIsoPi_hom_comp_pi_assoc, limitIsoPi_inv_comp_pi_assoc, limitIsoPi_hom_comp_pi

Theorems

NameKindAssumesProvesValidatesDepends On
limitIsoPi_hom_comp_pi 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.CechNerveTerminalFrom.wideCospan
CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan
CategoryTheory.Limits.piObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Discrete.functor
CategoryTheory.Iso.hom
limitIsoPi
CategoryTheory.Limits.Pi.π
CategoryTheory.Limits.WidePullback.π
CategoryTheory.Limits.terminal
CategoryTheory.Limits.terminal.from
CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
limitIsoPi_inv_comp_pi
CategoryTheory.Iso.hom_inv_id_assoc
limitIsoPi_hom_comp_pi_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.limit
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.CechNerveTerminalFrom.wideCospan
CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan
CategoryTheory.Limits.piObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Discrete.functor
CategoryTheory.Iso.hom
limitIsoPi
CategoryTheory.Limits.Pi.π
CategoryTheory.Limits.WidePullback.π
CategoryTheory.Limits.terminal
CategoryTheory.Limits.terminal.from
CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
limitIsoPi_hom_comp_pi
limitIsoPi_inv_comp_pi 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Discrete.functor
CategoryTheory.Limits.limit
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.CechNerveTerminalFrom.wideCospan
CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan
CategoryTheory.Iso.inv
limitIsoPi
CategoryTheory.Limits.WidePullback.π
CategoryTheory.Limits.terminal
CategoryTheory.Limits.terminal.from
CategoryTheory.Limits.Pi.π
CategoryTheory.Limits.IsLimit.conePointUniqueUpToIso_inv_comp
CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan
limitIsoPi_inv_comp_pi_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.Discrete.functor
CategoryTheory.Limits.limit
CategoryTheory.Limits.WidePullbackShape
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.CechNerveTerminalFrom.wideCospan
CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan
CategoryTheory.Iso.inv
limitIsoPi
CategoryTheory.Limits.WidePullback.π
CategoryTheory.Limits.terminal
CategoryTheory.Limits.terminal.from
CategoryTheory.Limits.Pi.π
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_discrete
CategoryTheory.CechNerveTerminalFrom.hasLimit_wideCospan
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
limitIsoPi_inv_comp_pi

CategoryTheory.CosimplicialObject

Definitions

NameCategoryTheorems
augmentedCechConerve 📖CompOp
2 mathmath: augmentedCechConerve_obj, augmentedCechConerve_map
cechConerve 📖CompOp
2 mathmath: cechConerve_map, cechConerve_obj
cechConerveAdjunction 📖CompOp
cechConerveEquiv 📖CompOp
2 mathmath: cechConerveEquiv_symm_apply, cechConerveEquiv_apply
equivalenceLeftToRight 📖CompOp
3 mathmath: equivalenceLeftToRight_left, equivalenceLeftToRight_right, cechConerveEquiv_apply
equivalenceRightToLeft 📖CompOp
3 mathmath: cechConerveEquiv_symm_apply, equivalenceRightToLeft_right_app, equivalenceRightToLeft_left

Theorems

NameKindAssumesProvesValidatesDepends On
augmentedCechConerve_map 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented
instCategoryAugmented
augmentedCechConerve
CategoryTheory.Arrow.mapAugmentedCechConerve
augmentedCechConerve_obj 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented
instCategoryAugmented
augmentedCechConerve
CategoryTheory.Arrow.augmentedCechConerve
cechConerveEquiv_apply 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
DFunLike.coe
Equiv
Quiver.Hom
Augmented
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Arrow.augmentedCechConerve
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Augmented.toArrow
EquivLike.toFunLike
Equiv.instEquivLike
cechConerveEquiv
equivalenceLeftToRight
cechConerveEquiv_symm_apply 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Augmented
instCategoryAugmented
Augmented.toArrow
CategoryTheory.Arrow.augmentedCechConerve
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
cechConerveEquiv
equivalenceRightToLeft
cechConerve_map 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.CosimplicialObject
instCategory
cechConerve
CategoryTheory.Arrow.mapCechConerve
cechConerve_obj 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.CosimplicialObject
instCategory
cechConerve
CategoryTheory.Arrow.cechConerve
equivalenceLeftToRight_left 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
Augmented
instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented.toArrow
equivalenceLeftToRight
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Arrow.augmentedCechConerve
equivalenceLeftToRight_right 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
Augmented
instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented.toArrow
equivalenceLeftToRight
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.widePushout
SimplexCategory.len
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Limits.WidePushout.ι
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat
CategoryTheory.NatTrans.app
CategoryTheory.Arrow.augmentedCechConerve
equivalenceRightToLeft_left 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Arrow.augmentedCechConerve
equivalenceRightToLeft
CategoryTheory.Functor.obj
Augmented
instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented.toArrow
equivalenceRightToLeft_right_app 📖mathematicalCategoryTheory.Limits.HasWidePushout
CategoryTheory.Comma.left
CategoryTheory.Functor.id
CategoryTheory.Comma.right
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CosimplicialObject
instCategory
const
CategoryTheory.Arrow.augmentedCechConerve
CategoryTheory.CommaMorphism.right
equivalenceRightToLeft
CategoryTheory.Limits.WidePushout.desc
SimplexCategory.len
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.left
Augmented
instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented.toArrow
CategoryTheory.Functor.map
SimplexCategory.const

CategoryTheory.SimplicialObject

Definitions

NameCategoryTheorems
augmentedCechNerve 📖CompOp
6 mathmath: augmentedCechNerve_obj_right, augmentedCechNerve_map_left_app, augmentedCechNerve_obj_left_map, augmentedCechNerve_obj_left_obj, augmentedCechNerve_obj_hom_app, augmentedCechNerve_map_right
cechNerve 📖CompOp
2 mathmath: cechNerve_obj, cechNerve_map
cechNerveAdjunction 📖CompOp
cechNerveEquiv 📖CompOp
2 mathmath: cechNerveEquiv_symm_apply, cechNerveEquiv_apply
equivalenceLeftToRight 📖CompOp
3 mathmath: cechNerveEquiv_apply, equivalenceLeftToRight_left_app, equivalenceLeftToRight_right
equivalenceRightToLeft 📖CompOp
3 mathmath: equivalenceRightToLeft_right, cechNerveEquiv_symm_apply, equivalenceRightToLeft_left

Theorems

NameKindAssumesProvesValidatesDepends On
augmentedCechNerve_map_left_app 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Arrow.cechNerve
CategoryTheory.CommaMorphism.left
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
const
CategoryTheory.Arrow.augmentedCechNerve
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented
instCategoryAugmented
augmentedCechNerve
CategoryTheory.Limits.WidePullback.lift
SimplexCategory.len
Opposite.unop
CategoryTheory.Limits.widePullback
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.WidePullback.base
CategoryTheory.CommaMorphism.right
CategoryTheory.Limits.WidePullback.π
augmentedCechNerve_map_right 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
const
CategoryTheory.Arrow.augmentedCechNerve
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented
instCategoryAugmented
augmentedCechNerve
augmentedCechNerve_obj_hom_app 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.Functor.obj
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
CategoryTheory.Arrow.cechNerve
const
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented
instCategoryAugmented
augmentedCechNerve
CategoryTheory.Limits.WidePullback.base
SimplexCategory.len
Opposite.unop
augmentedCechNerve_obj_left_map 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
const
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented
instCategoryAugmented
augmentedCechNerve
CategoryTheory.Limits.WidePullback.lift
SimplexCategory.len
Opposite.unop
CategoryTheory.Limits.widePullback
CategoryTheory.Limits.WidePullback.base
CategoryTheory.Limits.WidePullback.π
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
augmentedCechNerve_obj_left_obj 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
const
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented
instCategoryAugmented
augmentedCechNerve
CategoryTheory.Limits.widePullback
SimplexCategory.len
Opposite.unop
augmentedCechNerve_obj_right 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
const
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented
instCategoryAugmented
augmentedCechNerve
cechNerveEquiv_apply 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.Arrow
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Augmented
instCategoryAugmented
Augmented.toArrow
CategoryTheory.Arrow.augmentedCechNerve
EquivLike.toFunLike
Equiv.instEquivLike
cechNerveEquiv
equivalenceLeftToRight
cechNerveEquiv_symm_apply 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
DFunLike.coe
Equiv
Quiver.Hom
Augmented
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategoryAugmented
CategoryTheory.Arrow.augmentedCechNerve
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.Functor.obj
Augmented.toArrow
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
cechNerveEquiv
equivalenceRightToLeft
cechNerve_map 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Functor.map
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
cechNerve
CategoryTheory.Arrow.mapCechNerve
cechNerve_obj 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.Functor.obj
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
cechNerve
CategoryTheory.Arrow.cechNerve
equivalenceLeftToRight_left_app 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.NatTrans.app
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
const
CategoryTheory.Arrow.augmentedCechNerve
CategoryTheory.CommaMorphism.left
equivalenceLeftToRight
CategoryTheory.Limits.WidePullback.lift
SimplexCategory.len
Opposite.unop
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CommaMorphism.right
Augmented
instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented.toArrow
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
SimplexCategory.const
equivalenceLeftToRight_right 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
const
CategoryTheory.Arrow.augmentedCechNerve
equivalenceLeftToRight
CategoryTheory.Functor.obj
Augmented
instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented.toArrow
equivalenceRightToLeft_left 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.obj
Augmented
instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented.toArrow
equivalenceRightToLeft
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
const
CategoryTheory.Arrow.augmentedCechNerve
Opposite.op
CategoryTheory.NatTrans.app
CategoryTheory.Limits.WidePullback.π
SimplexCategory.len
Opposite.unop
SimplexCategory.instOfNatToTypeOrderHomFinHAddNatLenOfNat
equivalenceRightToLeft_right 📖mathematicalCategoryTheory.Limits.HasWidePullback
CategoryTheory.Comma.right
CategoryTheory.Functor.id
CategoryTheory.Comma.left
CategoryTheory.Comma.hom
CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.obj
Augmented
instCategoryAugmented
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
Augmented.toArrow
equivalenceRightToLeft
CategoryTheory.SimplicialObject
CategoryTheory.instCategorySimplicialObject
const
CategoryTheory.Arrow.augmentedCechNerve

---

← Back to Index