Documentation Verification Report

Compatibility

📁 Source: Mathlib/AlgebraicTopology/DoldKan/Compatibility.lean

Statistics

MetricCount
Definitionsequivalence, equivalenceCounitIso, equivalenceUnitIso, equivalence₀, equivalence₁, equivalence₁CounitIso, equivalence₁UnitIso, equivalence₂, equivalence₂CounitIso, equivalence₂UnitIso, τ₀, τ₁, υ
13
TheoremsequivalenceCounitIso_eq, equivalenceCounitIso_hom_app, equivalenceCounitIso_inv_app, equivalenceUnitIso_eq, equivalenceUnitIso_hom_app, equivalenceUnitIso_inv_app, equivalence_functor, equivalence_inverse, equivalence₀_functor, equivalence₀_inverse, equivalence₀_unitIso_hom_app, equivalence₁CounitIso_eq, equivalence₁CounitIso_hom_app, equivalence₁CounitIso_inv_app, equivalence₁UnitIso_eq, equivalence₁UnitIso_hom_app, equivalence₁UnitIso_inv_app, equivalence₁_functor, equivalence₁_inverse, equivalence₂CounitIso_eq, equivalence₂CounitIso_hom_app, equivalence₂CounitIso_inv_app, equivalence₂UnitIso_eq, equivalence₂UnitIso_hom_app, equivalence₂UnitIso_inv_app, equivalence₂_functor, equivalence₂_inverse, τ₀_hom_app, τ₁_hom_app, υ_hom_app, υ_inv_app
31
Total44

AlgebraicTopology.DoldKan.Compatibility

Definitions

NameCategoryTheorems
equivalence 📖CompOp
4 mathmath: equivalenceCounitIso_eq, equivalence_functor, equivalenceUnitIso_eq, equivalence_inverse
equivalenceCounitIso 📖CompOp
3 mathmath: equivalenceCounitIso_eq, equivalenceCounitIso_inv_app, equivalenceCounitIso_hom_app
equivalenceUnitIso 📖CompOp
3 mathmath: equivalenceUnitIso_inv_app, equivalenceUnitIso_eq, equivalenceUnitIso_hom_app
equivalence₀ 📖CompOp
3 mathmath: equivalence₀_unitIso_hom_app, equivalence₀_inverse, equivalence₀_functor
equivalence₁ 📖CompOp
4 mathmath: equivalence₁UnitIso_eq, equivalence₁_functor, equivalence₁CounitIso_eq, equivalence₁_inverse
equivalence₁CounitIso 📖CompOp
3 mathmath: equivalence₁CounitIso_hom_app, equivalence₁CounitIso_inv_app, equivalence₁CounitIso_eq
equivalence₁UnitIso 📖CompOp
3 mathmath: equivalence₁UnitIso_eq, equivalence₁UnitIso_hom_app, equivalence₁UnitIso_inv_app
equivalence₂ 📖CompOp
4 mathmath: equivalence₂CounitIso_eq, equivalence₂UnitIso_eq, equivalence₂_functor, equivalence₂_inverse
equivalence₂CounitIso 📖CompOp
3 mathmath: equivalence₂CounitIso_inv_app, equivalence₂CounitIso_hom_app, equivalence₂CounitIso_eq
equivalence₂UnitIso 📖CompOp
3 mathmath: equivalence₂UnitIso_inv_app, equivalence₂UnitIso_eq, equivalence₂UnitIso_hom_app
τ₀ 📖CompOp
2 mathmath: τ₀_hom_app, CategoryTheory.Idempotents.DoldKan.hη
τ₁ 📖CompOp
2 mathmath: τ₁_hom_app, CategoryTheory.Idempotents.DoldKan.hη
υ 📖CompOp
3 mathmath: CategoryTheory.Idempotents.DoldKan.hε, υ_hom_app, υ_inv_app

Theorems

NameKindAssumesProvesValidatesDepends On
equivalenceCounitIso_eq 📖mathematicalτ₀
τ₁
CategoryTheory.Equivalence.counitIso
equivalence
equivalenceCounitIso
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
equivalence₂CounitIso_eq
equivalence₂CounitIso_hom_app
CategoryTheory.Category.assoc
equivalenceCounitIso_hom_app
τ₁_hom_app
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.Equivalence.fun_inv_map
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Equivalence.functor_unit_comp
CategoryTheory.Functor.map_id
equivalenceCounitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalenceCounitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.unitIso
CategoryTheory.Category.id_comp
equivalenceCounitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalenceCounitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
equivalenceUnitIso_eq 📖mathematicalυCategoryTheory.Equivalence.unitIso
equivalence
equivalenceUnitIso
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext
equivalence₂UnitIso_eq
equivalence₂UnitIso_hom_app
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
equivalenceUnitIso_hom_app
υ_hom_app
equivalenceUnitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalenceUnitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id
equivalenceUnitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalenceUnitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Equivalence.counitIso
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
equivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
equivalence
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
equivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
equivalence
equivalence₀_functor 📖mathematicalCategoryTheory.Equivalence.functor
equivalence₀
CategoryTheory.Functor.comp
equivalence₀_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
equivalence₀
CategoryTheory.Functor.comp
equivalence₀_unitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.unitIso
equivalence₀
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
equivalence₁CounitIso_eq 📖mathematicalCategoryTheory.Equivalence.counitIso
equivalence₁
equivalence₁CounitIso
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.isoWhiskerRight_trans
CategoryTheory.Iso.trans_assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
equivalence₁CounitIso_hom_app
equivalence₁CounitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalence₁CounitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.inv
CategoryTheory.Functor.map
CategoryTheory.Equivalence.counitIso
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
equivalence₁CounitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalence₁CounitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.counitIso
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Category.id_comp
equivalence₁UnitIso_eq 📖mathematicalCategoryTheory.Equivalence.unitIso
equivalence₁
equivalence₁UnitIso
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
equivalence₀_unitIso_hom_app
CategoryTheory.Category.assoc
equivalence₁UnitIso_hom_app
equivalence₁UnitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalence₁UnitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
equivalence₁UnitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalence₁UnitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.map
CategoryTheory.Equivalence.unitIso
CategoryTheory.Category.id_comp
equivalence₁_functor 📖mathematicalCategoryTheory.Equivalence.functor
equivalence₁
equivalence₁_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
equivalence₁
CategoryTheory.Functor.comp
equivalence₂CounitIso_eq 📖mathematicalCategoryTheory.Equivalence.counitIso
equivalence₂
equivalence₂CounitIso
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
equivalence₁CounitIso_eq
CategoryTheory.Functor.isoWhiskerRight_trans
CategoryTheory.Iso.trans_assoc
CategoryTheory.Functor.map_id
equivalence₁CounitIso_hom_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
equivalence₂CounitIso_hom_app
equivalence₂CounitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalence₂CounitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
CategoryTheory.Equivalence.unitIso
CategoryTheory.Category.comp_id
equivalence₁CounitIso_hom_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
equivalence₂CounitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalence₂CounitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Equivalence.counitIso
equivalence₁CounitIso_inv_app
CategoryTheory.Functor.map_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
equivalence₂UnitIso_eq 📖mathematicalCategoryTheory.Equivalence.unitIso
equivalence₂
equivalence₂UnitIso
CategoryTheory.Iso.ext
CategoryTheory.NatTrans.ext'
CategoryTheory.Functor.isoWhiskerRight_trans
CategoryTheory.Iso.trans_assoc
equivalence₀_unitIso_hom_app
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
equivalence₂UnitIso_hom_app
equivalence₂UnitIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalence₂UnitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
CategoryTheory.Equivalence.counitIso
equivalence₁UnitIso_hom_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_id
equivalence₂UnitIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.id
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
equivalence₂UnitIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
CategoryTheory.Equivalence.counitIso
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map_id
equivalence₁UnitIso_inv_app
CategoryTheory.Category.id_comp
equivalence₂_functor 📖mathematicalCategoryTheory.Equivalence.functor
equivalence₂
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
equivalence₂_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
equivalence₂
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
τ₀_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
τ₀
CategoryTheory.Functor.id
CategoryTheory.Equivalence.counitIso
CategoryTheory.Functor.obj
CategoryTheory.Category.comp_id
τ₁_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.functor
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
τ₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
υ_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Equivalence.functor
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
υ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unitIso
CategoryTheory.Functor.map
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
υ_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.functor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
υ
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Functor.map
CategoryTheory.Functor.id
CategoryTheory.Equivalence.unitIso
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp

---

← Back to Index