| Name | Category | Theorems |
equivalence 📖 | CompOp | 4 mathmath: equivalenceCounitIso_eq, equivalence_functor, equivalenceUnitIso_eq, equivalence_inverse
|
equivalenceCounitIso 📖 | CompOp | 3 mathmath: equivalenceCounitIso_eq, equivalenceCounitIso_inv_app, equivalenceCounitIso_hom_app
|
equivalenceUnitIso 📖 | CompOp | 3 mathmath: equivalenceUnitIso_inv_app, equivalenceUnitIso_eq, equivalenceUnitIso_hom_app
|
equivalence₀ 📖 | CompOp | 3 mathmath: equivalence₀_unitIso_hom_app, equivalence₀_inverse, equivalence₀_functor
|
equivalence₁ 📖 | CompOp | 4 mathmath: equivalence₁UnitIso_eq, equivalence₁_functor, equivalence₁CounitIso_eq, equivalence₁_inverse
|
equivalence₁CounitIso 📖 | CompOp | 3 mathmath: equivalence₁CounitIso_hom_app, equivalence₁CounitIso_inv_app, equivalence₁CounitIso_eq
|
equivalence₁UnitIso 📖 | CompOp | 3 mathmath: equivalence₁UnitIso_eq, equivalence₁UnitIso_hom_app, equivalence₁UnitIso_inv_app
|
equivalence₂ 📖 | CompOp | 4 mathmath: equivalence₂CounitIso_eq, equivalence₂UnitIso_eq, equivalence₂_functor, equivalence₂_inverse
|
equivalence₂CounitIso 📖 | CompOp | 3 mathmath: equivalence₂CounitIso_inv_app, equivalence₂CounitIso_hom_app, equivalence₂CounitIso_eq
|
equivalence₂UnitIso 📖 | CompOp | 3 mathmath: equivalence₂UnitIso_inv_app, equivalence₂UnitIso_eq, equivalence₂UnitIso_hom_app
|
τ₀ 📖 | CompOp | 2 mathmath: τ₀_hom_app, CategoryTheory.Idempotents.DoldKan.hη
|
τ₁ 📖 | CompOp | 2 mathmath: τ₁_hom_app, CategoryTheory.Idempotents.DoldKan.hη
|
υ 📖 | CompOp | 3 mathmath: CategoryTheory.Idempotents.DoldKan.hε, υ_hom_app, υ_inv_app
|