Documentation Verification Report

Decomposition

📁 Source: Mathlib/AlgebraicTopology/DoldKan/Decomposition.lean

Statistics

MetricCount
DefinitionsMorphComponents, a, b, id, postComp, preComp, φ
7
Theoremsext, ext_iff, id_a, id_b, id_φ, postComp_a, postComp_b, postComp_φ, preComp_a, preComp_b, preComp_φ, decomposition_Q
12
Total19

AlgebraicTopology.DoldKan

Definitions

NameCategoryTheorems
MorphComponents 📖CompData

Theorems

NameKindAssumesProvesValidatesDepends On
decomposition_Q 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
Q
Finset.sum
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Finset.filter
Finset.univ
Fin.fintype
CategoryTheory.CategoryStruct.comp
P
CategoryTheory.SimplicialObject.δ
CategoryTheory.SimplicialObject.σ
AddRightCancelSemigroup.toIsRightCancelAdd
Q_zero
Finset.sum_congr
Finset.filter.congr_simp
Finset.filter_false
Q_is_eventually_constant
Finset.ext
Q_succ
HomologicalComplex.sub_f_apply
HomologicalComplex.comp_f
sub_eq_add_neg
add_comm
Finset.add_sum_erase
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
HigherFacesVanish.comp_Hσ_eq
HigherFacesVanish.of_P
neg_neg

AlgebraicTopology.DoldKan.MorphComponents

Definitions

NameCategoryTheorems
a 📖CompOp
4 mathmath: preComp_a, postComp_a, ext_iff, id_a
b 📖CompOp
4 mathmath: preComp_b, ext_iff, postComp_b, id_b
id 📖CompOp
3 mathmath: id_φ, id_a, id_b
postComp 📖CompOp
3 mathmath: postComp_a, postComp_b, postComp_φ
preComp 📖CompOp
3 mathmath: preComp_a, preComp_b, preComp_φ
φ 📖CompOp
3 mathmath: id_φ, preComp_φ, postComp_φ

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖a
b
ext_iff 📖mathematicala
b
ext
id_a 📖mathematicala
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
id
HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
AlgebraicTopology.DoldKan.PInfty
id_b 📖mathematicalb
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
id
CategoryTheory.SimplicialObject.σ
id_φ 📖mathematicalφ
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
id
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
AddRightCancelSemigroup.toIsRightCancelAdd
AlgebraicTopology.DoldKan.P_add_Q_f
AlgebraicTopology.DoldKan.P_f_idem
Finset.sum_congr
Finset.filter.congr_simp
Finset.filter_true
AlgebraicTopology.DoldKan.decomposition_Q
postComp_a 📖mathematicala
postComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
postComp_b 📖mathematicalb
postComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
postComp_φ 📖mathematicalφ
postComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
Finset.sum_congr
CategoryTheory.Preadditive.add_comp
CategoryTheory.Category.assoc
CategoryTheory.Preadditive.sum_comp
preComp_a 📖mathematicala
preComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.NatTrans.app
preComp_b 📖mathematicalb
preComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.NatTrans.app
preComp_φ 📖mathematicalφ
preComp
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.NatTrans.app
AddRightCancelSemigroup.toIsRightCancelAdd
Finset.sum_congr
CategoryTheory.Preadditive.comp_add
AlgebraicTopology.DoldKan.P_f_naturality_assoc
CategoryTheory.SimplicialObject.δ_naturality_assoc
CategoryTheory.Preadditive.comp_sum

---

← Back to Index