Documentation Verification Report

Degeneracies

📁 Source: Mathlib/AlgebraicTopology/DoldKan/Degeneracies.lean

Statistics

MetricCount
Definitions0
Theoremscomp_σ, degeneracy_comp_PInfty, degeneracy_comp_PInfty_assoc, σ_comp_PInfty, σ_comp_PInfty_assoc, σ_comp_P_eq_zero
6
Total6

AlgebraicTopology.DoldKan

Theorems

NameKindAssumesProvesValidatesDepends On
degeneracy_comp_PInfty 📖mathematicalCategoryTheory.Mono
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.Hom.f
PInfty
Quiver.Hom
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
Fintype.complete
SimplexCategory.mono_iff_injective
SimplexCategory.eq_σ_comp_of_not_injective
CategoryTheory.op_comp
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
σ_comp_PInfty
CategoryTheory.Limits.comp_zero
degeneracy_comp_PInfty_assoc 📖mathematicalCategoryTheory.Mono
SimplexCategory
SimplexCategory.smallCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
PInfty
Quiver.Hom
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
degeneracy_comp_PInfty
σ_comp_PInfty 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.SimplicialObject.σ
HomologicalComplex.Hom.f
PInfty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
PInfty_f
σ_comp_P_eq_zero
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
σ_comp_PInfty_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.SimplicialObject.σ
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
HomologicalComplex.Hom.f
PInfty
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
σ_comp_PInfty
σ_comp_P_eq_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
AlgebraicTopology.AlternatingFaceMapComplex.obj
CategoryTheory.SimplicialObject.σ
HomologicalComplex.Hom.f
P
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
P_succ
HomologicalComplex.comp_f
CategoryTheory.Category.assoc
CategoryTheory.Limits.zero_comp
Fintype.complete
CategoryTheory.Preadditive.comp_add
CategoryTheory.Category.comp_id
Homotopy.nullHomotopicMap'_f
AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq
zero_add
hσ'_eq'
add_zero
Fin.sum_univ_two
Fin.sum_univ_succ
pow_zero
one_smul
pow_one
neg_smul
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.neg_comp
CategoryTheory.Category.id_comp
CategoryTheory.Preadditive.comp_neg
pow_add
mul_neg
neg_mul
one_mul
neg_neg
CategoryTheory.SimplicialObject.δ_comp_σ_self
CategoryTheory.SimplicialObject.δ_comp_σ_self_assoc
CategoryTheory.SimplicialObject.δ_comp_σ_succ
CategoryTheory.SimplicialObject.δ_comp_σ_of_le
le_refl
CategoryTheory.SimplicialObject.δ_comp_σ_succ_assoc
add_neg_cancel
P_add_Q_f
HigherFacesVanish.comp_σ
HigherFacesVanish.of_P
HigherFacesVanish.comp_P_eq_self
HigherFacesVanish.comp_Hσ_eq
decomposition_Q
CategoryTheory.Preadditive.sum_comp
Finset.sum_eq_zero
add_comm
CategoryTheory.SimplicialObject.σ_comp_σ_assoc
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.comp_zero
add_neg_eq_zero

AlgebraicTopology.DoldKan.HigherFacesVanish

Theorems

NameKindAssumesProvesValidatesDepends On
comp_σ 📖mathematicalAlgebraicTopology.DoldKan.HigherFacesVanishCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Opposite.op
CategoryTheory.SimplicialObject.σ
CategoryTheory.Category.assoc
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
neg_eq_zero
sub_eq_zero_of_eq
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
lt_of_lt_of_le
CategoryTheory.SimplicialObject.δ_comp_σ_of_gt'
comp_δ_eq_zero_assoc
add_comm
add_assoc
zero_add
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instCanonicallyOrderedAdd
Unique.instSubsingleton
CategoryTheory.Limits.zero_comp

---

← Back to Index